1 / 37

The Fresnel Imager for exoplanet study

The Fresnel Imager for exoplanet study. Laurent Koechlin 1 , Jean-Pierre Rivet 2 , Truswin Raksasataya 1 , Paul Deba 1 , Denis Serre 3. 1 Université de Toulouse CNRS 2 Observatoire de la c ôte d'Azur CNRS 3 Leiden University, the Netherlands. I. Concept.

lee-chan
Télécharger la présentation

The Fresnel Imager for exoplanet study

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Fresnel Imager for exoplanet study Laurent Koechlin 1, Jean-Pierre Rivet 2, Truswin Raksasataya 1, Paul Deba 1, Denis Serre 3. 1 Université de Toulouse CNRS 2 Observatoire de la côte d'Azur CNRS 3 Leiden University, the Netherlands

  2. I. Concept

  3. Lens (or miror): focusing by refraction (or reflexion) focus Plane wavefront Fresnel array: focusing by diffraction … focus Optical concept: Light focalization Lens Spherical wavefront Binary transmission function g(x) Order 0 : plane wave Order 1 : convergent

  4. Optical concept : Image formation Can light travel free in vacuum all the way from source to focus? Image Aperture Quasi no stray light except in four spikes. Transmission: g(x) Transmission: g(x)"xor" g(y) non linear luminosity scale, to show the spikes.

  5. Basic concepts: Fresnel arrays versus solid aperture Images of a point source by: 300 Fresnel zones 3000 Fresnel zones Solid square aperture luminosity scale:Power 1/4 to show spikes

  6. Basic concepts: Dynamic range & resolution PSF for 300 zones (720 000 apertures) Numerical Fresnel propagation apodized prolate, order 0 masked Log dynamic 1/4 field represented Position in the field (resels)

  7. "Against" Fresnel Arrays: f Chromaticity... But can be canceled by order -1 chromaticityafter focus, Channel bandpass limitations: Δλ/λ= 15% f = D2/8zλ D transmission efficiency to focus: 6% to 10% 1km to 100km focal lengths => Formation flying in space f = D2/8zλ

  8. "pro" Fresnel Arrays: No mirror, no lens : just vacuum and opaque material (except near focal plane). broad spectral domain: λ = 90nm (UV) to (IR) 25μm High angular resolution: as a solid aperture the size of the array. High dynamic range: 108 on compact objects, more with coronagraphy & postprocessing. Large tolerance in positioning of subapertures: for λ/50 wavefront quality in the UV on a 30 meters membrane array: 50 μm in the plane of the membrane, 10 mm perp. to membrane, The tolerance is wavelength independent. Opens the way to large (up to 100m?) aberration-free apertures.

  9. II. Tests Does it work ?

  10. 2x2 cm array I have it here, It's working. live demo after this session. For those who Haven't already Seen it…

  11. 8x8 cm array: tests on lab sources (2005-2008) 116 zones, 8 x 8 cm 26680 apertures "orthocircular" design. F= 23 m at = 600 nm Precision: 5m on holes positioning =>/70 on wavefront. Achievements: Diffraction limited Broad band imaging (450-850nm) 10-6dynamic range metal foil 100 m thick Photo T.Raksasataya

  12. 20x20 cm array: test on sky sources (2009-2011) 0.8" resolution 1000x1000 field λ0 = 800 nm Δλ = 100 nm Photo D.Serre

  13. Metal foil 9.7 105 apertures, Slightly apodized, 696 Fresnel zones. 20 cm Photo P.Deba

  14. 20x20 cm array: first light on stars ALINEMENT PHASE images: temporary 116 zones secondary (instead of 702 zones) Tip-Tilt not yet implemented 52 Cygni a-b Va= 4.2 vb= 8.7 sep= 6.4" STT 433 a-b Va=4.36 ; Vb=10.0 Sep= 15" more results at our workshop in Nice next week

  15. 20 cm array goals Assess performances on real sky objects: do better than other 20 cm aperture instruments. Targets: High contrast objects extended sources dense fields deep sky

  16. ESA study ESA call for Feasibility study of a membrane telescope 350 k€

  17. III. Space Mission Science ? Credibility ?

  18. The Fresnel Imager Space Mission 3m to 100m diameter, or more. Thin membrane "Primary Array" module: Field optics telescope 1/10th to 1/20th the diameter of Primary Array. Dispersion correction: order -1 diffraction Blazed lens or concave grating, 10 to 30 cm diameter focal Instrumentation: Spectro-imagers

  19. Rationale Meet acceptability threshold for a new technology mission Make it simple, try to keep cost below 300 M€ Scientific return over cost:must be higher than that ofcompeting concepts λ/50 wavefront, at any λ => High Dynamic range from IR to UV mas angular resolution 1000x1000 resel. fields Spectral resolution Suitable for Exoplanets and other fieds too…

  20. Strategy, sky targets - Start with UV domain? - limited budget => limited aperture, but high resolution - High quality wavefront at any wavelength - angular resolution : 7 mas with a 4m Fresnel array - spectral lines in UV for: Photosynthesis break, O3, CH4, CO2 , auroras … - polarimetry

  21. Space Mission: optical scheme Spacecraft 1 Solar Baffle, to protect from sunlight Large "Primary Fresnel Array: Thin foil, 4 to 30 m diameter, or more. Field optics telescope Order zero blocked Focal instrum. Diffraction order 1: focused, but with chromatic aberration. Spacecraft 2 pupil plane Diffraction order 0: unfocussed will be focused by field optics, then blocked. Focal instruments Chromatic correction: Blazed Fresnel grating 5 km (for a 4m aperture) to 100 km (for a 30m aperture) image plane 1dispersed image plane 2 achromatic

  22. Targets: S/N on exoplanets in UV Signal / noise as a function of  uv uv Signal / noise > 30 0.5 Jupiter diameter 1 Jupiter diameter planet Signal / noise > 3 Signal / noise < 3 Signal / noise > 3 Signal / noise < 3 Images & spectra of exoplanets: 1 UA from solar type star, 10Pc away 4m aperture, 10h integration spectral res.  /= 50 dynamic range of raw image: 2 10^-8

  23. Conclusion Build up a proposal for a 2020 / 2025 launch Science cases: Exoplanets, and also stellar physics compact objects reflection nebulae extragalactic solar system objects observation of the earth 21/2 days workshop in Nice, Sept. 23-25 (next week) Free registration Web site:search with key words "fresnel imager Nice" http://www.ast.obs-mip.fr/users/lkoechli/w3/space_borne_page/page_congres.html We are starting a "Fresnel Imager Astro Applications" group.

  24. Thank you for your attention! You are welcome to join us. Workshop: sept 23-25 (next week)

  25. Bonus slides

  26. Optical concept : Image formation Circular Fresnel Zone Plate => PSF with isotropic rings Image Aperture Isotropic rings non linear luminosity scale to show the rings.

  27. expansion 2D Cartésienne Réseau de Fresnel ou Interféromètre à forte densité d’ouvertures ? Géométrie "orthogonale pure" (2005) 4 % de la lumière focalisée 1740 motifs individuels Géométrie "ortho-circulaire" (2008) 6 % de la lumière focalisée

  28. Chromatically aberrated beam at prime focus The field vs spectral bandpas tradeoff Field delimited by field mirror The chromatic corrector does a good job, but it corrects only what it collects.

  29. Fresnel Imager specifications UV spectro-Imaging at High Dynamic Range 4m aperture 3 spectral bands Δλ/λ=20%: 2 in the UV, 1 in the visible λ/50 wavefront spectral resolution λ/δλ=50 angular resolution 7 to 25 mas depending on λ field 1000x1000 => 7 to 25 arc seconds raw dynamic range >108 - with 10 hours integrations time: jovian exoplanets with apertures of 1 m or more telluric Exoplanets: only with 10 meters apertures or larger - Other fields of astrophysics

  30. Gen III prototype: Primary array R&T financed by CNES & STAE Size : 8 cm, square 240 Fresnel zones (110 000 apertures) metal sheet 100 m thick, laser carved Operates in the UV (250-350 nm) Focal length: 26.6 m for = 250 nm Precision on array : 5m i.e./30 on wavefront

  31. Gen III prototype Critical point: concave blazed mirror infocal module

  32. Orbites et pointages petite Lissajou periode : 6 mois1 eclipse en 6 ans, évitable Lingne de visée eclipticque Fresnel baffle sun sun 200 000 km Terre éclipticque L2 8° 14° Lune • Seul, Lagrange L2 répond à tous les besoins: • pas de gradient de gravité sur une grande base • masquage du soleil et de la Terre dans un angle réduit • bonne liberté de pointage • Pour la très haute dynamique: nécessité de masquer toute lumière parasite avec taille pare soleil réduit et possibilité de dépointage acceptable: • 35% de la voûte à tout instant, 100% en 4 mois. •  implique petite ou moyenne orbite de Lissajou Antenne RA fixe et GS fixe possible à partir de 100 000km de la Terre

  33. Résultats qualitatifs : dynamiquemesure optiqueet simulation numérique Dans ces images d'un point, saturées, le fond moyen est à 2 *10 -6 Luminosité amplifiée x1000 Luminosité amplifiée x1000 8 cm 116 zones image Optique 8 cm 116 zones propagation de Fresnel numerique par tous les éléments optiques propagation numerique de Fresnel développée pour tester de grands réseaux

  34. expansion 2D Cartésienne Réseau de Fresnel ou Interféromètre à forte densité d’ouvertures ? Géométrie "orthogonale pure" (2005) 4 % de la lumière focalisée 1740 motifs individuels Géométrie "ortho-circulaire" (2008) 6 % de la lumière focalisée

  35. Fields obtained with 2 exposures rotated 45°

  36. scenarios

More Related