1 / 68

Earth – a somewhat bigger laboratory for school Physics

Earth – a somewhat bigger laboratory for school Physics. Grzegorz Karwasz Andrzej Karbowski Krzysztof Służewski. Zakład Dydaktyki Fizyki, Uniwersytet Mikołaja Kopernika w Toruniu. http://dydaktyka.fizyka.umk.pl. Rationale (I): Polish National Curriculum Base (2007).

Télécharger la présentation

Earth – a somewhat bigger laboratory for school Physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Earth – a somewhat bigger laboratory for school Physics Grzegorz Karwasz Andrzej Karbowski Krzysztof Służewski Zakład Dydaktyki Fizyki, Uniwersytet Mikołaja Kopernika w Toruniu http://dydaktyka.fizyka.umk.pl

  2. Rationale (I): Polish National Curriculum Base (2007)

  3. Rationale (II): XXI Century Science

  4. XXI Century Science

  5. XIV: Structure and evolution of Earth • Litosphere • Hydroshere • Atmosphere • (Crysphere) • Biosphere XV: Structure and evolution of Solar System

  6. Didactical/ heurestic goal • Bring together Physics & Geography • Illustrate, possibly experimentally, phenomena • Choose the minimum knowledge requirements • Make the whole package attractive • Didactical theory context: • neo-realism (show as much as you can, • and even more), • hyper- constructivism (make student construct • his/ her knowledge from apparently nothing, • i.e. pre-existing knowledge in his/her mind) G. Karwasz, Problemy Wczesnego Nauczania, 2013 G. Karwasz, GIREP Conference 2012

  7. Case examples: • radioactivity → the age of Earth • two-body mechanics → Earth and Moon • gravity and rotation → shape of Earth • convection and radioactivity → shield tectonics • electromagnetic induction → magnetic field • Coriolis force → general dynamics of atmosphere • Coriolis force → dynamics of oceanic currents • latent heat & convection → tropical storms

  8. Three heurestic functions of an interactive/multimedia object • Child: that’s so funny! • Pupil: that’s so easy! • Scientist: that’s so complex! G. Karwasz, J. Kruk, Idee i realizacje dydaktyki interaktywnej, Wyd. Nauk. UMK, 2012

  9. Radioactive series • In other words: • a starting point 238U • some „bottle necks” • an ending point 206Pb rad - 1600 lat, gaz radon - 3,8 dnia, polon - 3 minuty, ołów - 27 minut (ten rozpada się przez proces β); bizmut - 20 minut; w kolejnym rozpadzie β powstaje ponownie polon, ale inny izotop, żyjący zaledwie 0,16 milisekundy, itd.

  10. What is the age of Earth/Solar system?

  11. What is the age of Earth? Science 321, 1828 (2008);Jonathan O'Neil, et al.Neodymium-142 Evidencefor Hadean Mafic Crust Science 309, 576 (2005);M. Boyet, et al.Silicate Earth142Nd Evidence for Early (>4.53 Ga) Global Differentiation of theSilicate Earth

  12. What is the age of Universe? Planck mission (March 2013): 13.67 bilion yrs

  13. Moon – a companion from (almost) ever http://en.wikipedia.org/wiki/Lunar_eclipse 4.567 bln yrs + ~100 mln yrs ago

  14. „Satelite” = body guard G. Karwasz, M. Więcek, Toruński po-ręcznik. Fizyka współczesna, ZDF UMK 2012

  15. „Satelite” = orbit stabilizer Physics and Toys → destabilisation of Earth’s axis in 100 mln yrs

  16. „Jakiego kształtu jest kula ziemska?”What is the shape of Earth’s ball? Answer: „Geoide” = Earth-like shape Foto: ESA = tautology https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/goce

  17. Copernicus: Why water does not flow down from Earth’s ball? Także i wody morskie układają się do postaci kulistej [...] jako ląd i woda wspierają się na jednym środku ciężkości Ziemi, który jest zarazem środkiem jej objętości. Newton: Because of gravity remained: „what is the shape of Earth?”

  18. Newton: Elipsoid because of the centrifugal force

  19. Centrifugal force from textbooks waves of kilometric heights would flush down the globe!

  20. Elipsoid is perpendicular to the effective gravity force „flatness” 1/297

  21. Parabole is perpendicular to the effective gravity force

  22. Springs in mountains flow perpendicularly to iso-height lines In physics we call these lines - equi-potential lines: the gravity force is perpendicular to potential lines

  23. Ellipsoid vs. geoid i.e. geometry vs. physics Geoid – constant (gravitational + centrifugal) potential surface

  24. GOCE: equipotential lines https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/goce

  25. Earth’s shape: equipotential surface ± 100 m https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/goce

  26. Earth’s shape: equipotential surface Geoid is lower than elipsoid in the Himalaya mountains! Potential formula: V=GM/r2 Lower mass → lower r Himalaya are ligth (calcite) rocks

  27. What is the shape of Earth? The one, shown by the lever (libella) and this is perpendicular to the vertical Poziomica, pion

  28. Earth’s shape: horizontal water because water level is always horizontal, like Copernicus said

  29. What is the Earth’s internal structure? S-wave in iron: 3,24 km/s P-wave in iron: 5,95 km/s Sprężyny, stukot

  30. What is the Earth’s structure?

  31. What is the Earth’s structure? crust ↔ litosphere mantello ↔ astenosphere G. Karwasz, J. Chojnacka, Geografia w Szkole, 2012

  32. How old is Europe? M. Grad, T. Tirra, and ESC Working Group, The Moho depth map of the European Plate, Geophys. J. Int. 176 (2009), str. 279.

  33. What is the Earth’s crust? Lampa Lava

  34. Why this vertical movement? • Heat flux: • 238U: 8 TW (1015 W) • 232Th: 8 TW • 40K: 4 TW • cooling: 20 TW • (electricity production: 10 TW) Physics World, March 2013

  35. Quarz, olivine etc. Mg2SiO4 http://webmineral.com/data/Forsterite.shtml#.U6dDmHZcuRM

  36. so, the vertical structure is getting complex

  37. so, the vertical structure is getting quite complex... Nature09401-f1.2.jpg

  38. „Pangea” Geo-fizyka dla nie-fizyków 300 mln yrs ago Justyna ChojnackaZakład Dydaktyki Fizyki Wydział Fizyki, Astronomii i Informatyki Stosowanej

  39. and the surface structure? some 500 mln yrs ago

  40. Moving continents + 50 mln yrs (?) wosk

  41. Colliding continents (I) John Nábelek, et al.Science 325, 1371 (2009); Foto: J. Karwowski, M. Karwasz, M. Visintainer

  42. Colliding continents (IIa) Westward: Japan Subduction angle: 45º Dwie kartki papieru

  43. Colliding continents (IIb) Eastward: Andes Subduction angle: 15-25º

  44. Colliding continents (III) Subduction of oceanic plates Physics World, no 3. (2012) Ryc. K. Konieczna

  45. IV Continents drifting away Foto M. Karwasz

  46. IVa Continents drifting away Foto M. Karwasz

  47. Earth’s magnetic field Dynamo model

  48. Magnetic nigthingales

  49. Auto-generated electric super-currents →auto-generated magnetic fields Illustration of the dynamo mechanism that creates the Earth's magnetic field 389371aa.eps.2.gif

  50. so, it is getting quite complex Glatzmaier and Roberts 1995

More Related