1 / 7

Challenges

본 자료는 1997 SIA roadmap, 1997 OITDA roadmap,1999 MEL-ARI OPTO roadmap 등의 자료와 Stanford Prof. D. Miller 의 short course (Photonic-West 2002) 자료 , 그리고 , 개인적인 의견을 약간 가미하여 준비한 자료이다 . 가능한 한 객관적인 시각을 유지하기 위하여 technical data 위주로 작성되어 있다 .

Télécharger la présentation

Challenges

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 본 자료는 1997 SIA roadmap, 1997 OITDA roadmap,1999 MEL-ARI OPTO roadmap 등의 자료와 Stanford Prof. D. Miller 의 short course (Photonic-West 2002) 자료,그리고, 개인적인 의견을 약간 가미하여 준비한 자료이다. 가능한 한 객관적인 시각을 유지하기 위하여 technical data 위주로작성되어 있다. • 언제 optics가 computer 내에서 주도적인 역할을 할 것인가? - 2007-2010 년 사이 • 그러한 근거를 결론적으로 요약해 본다면 다음과 같다. • IT 산업적 측면에서 보면, 2007-2010 사이에 electronic interconnection line의 속도가 CPU 처리속도에 비해 매우 떨어지는 시기에 optical processor가 요구될 것이고, • 프로세서에서의 화상처리 요구에 의해 1024x1024 image 처리를 위한 10G computing operation이 필요하고,-device 측면에서 보면, silicon-based CMOS IC와 integration된 광소자들의 개발시기도1024 I/Oarray크기로cost effective하게 개발될 것이고, • system 측면에서 보아도, 그때 정도면opticalmodule packaging및 integration이electronic system에 대해 경쟁력을가질 수 있지 않을까 하는 등의 근거에 바탕을 두었다. • 결론적으로 말한다면, processor 혹은 computer 전체가 all-optical system으로 이루어 지는 시기가 아니라, CPU, Memory 등 logic operation이 필요한 chip들과 power driver등은CMOS-based IC들을 그대로 쓰고, board-to-board level에서 시작하여chip-to-chip level 까지의 connection을 optical로 하는 optoelectronically interconnected system 이 이루어 지는 시기라 하는 것이 정확한 표현일 것이다. • 이는 마치all optical communication을 어디까지 이루어 진 것으로 정의하고 언제 될 것인가를 예측하는 경우와 유사하리라 생각된다. • 2001. 3. 13 송석호

  2. Challenges • Electronic interconnect system is far from death! • Cheap (2.3 cents/pin @2001, 1.5 cents/pin @2009) • Reliable and high performance • Optical interconnect system makes • Latency • Inadequate density of off-chip and intra chip connections • Poor processor-memory performance • High power comsumption • Absence of credible low-cost optoelectronics technology • High cost, cost, ………. • Optical system should be • Volume manufacturability (several millions) at low cost • Attached at wafer level by hybridization • Reliable, CAD integrated, hybridized, and cost effective!

  3. Opportunities • Trends on electronic system (SIA 1997) show • 200 million transistors in logic IC chip @ 2006 • 20 km interconnection length in 140nm-based chip @2010 • 4000 I/O pins with 25 micron pitch in ASIC @2009 • 2.5 GHz speed in on-chip and off-chip @ 2009 • Electrical approach has physical limit on • connection-line length by RC and LC line response • bit rate = area/length^2 : (1Tb/s for 2cm wide, 5 micron thick, 4cm long lines) • Optical approach solves those problems and satisfies those trends in processor systems!

  4. Core Technologies (1) • Optoelectronic devices • Photodetectors : p-i-n, avalanche, … • Light emitters : LEDs, edge emitting LD, surface emitting, • Optical amplifiers : SOA, Er-fiber • Light modulators : electroabsorption, electrorefraction • Device integration on Si-CMOS VLSI chip • Monolithic integration of III-V & II-VI on silicon • Hybrid integration : flip-chip & solder bonding • (128x128) GaAs modulator on CMOS – 1996 by Worchesky et al. • (16x16) VCSEL on CMOS – 1997 by Paananen et al. • Optical connectors • Fiber ribbon with VCSELs • 4*10Gbit/s 310m @850nm and 2.5Gbit/s 50km @1600nm • Polymer fibers and waveguides (100dB/km in CYTOP polymer)

  5. Core Technologies (2) • Free-space optics devices and packaging • Chip-to-chip interconnect • Board-to-board interconnect • Slotted base-plate packaging • Optical MEMS • Planar optics • Microbridges, fiber image guide • Examples of waveguide & free-space interconnect system • Optical circuit board (2000) : polymer waveguide, 10 micron thick, 0.2dB/cm loss • Planar optics (2001) : fiber ribbon I/O with 6mm thick planar glass-board • Fiber image guide (2000) : space-variant connection • Multistage parallel switching system : 60,000 beams in parallel, 6 stages, 32x32 FET-SEEDs on CMOS (smart pixel) array

  6. Electronics to Photonicsin Computing • Prototype of optically interconnected processor with electrical CPU and RAM CMOS chips can be realized between 2007-2010, because • Electrical line interconnects do not scale to keep up with transistor speed • On-chip global bandwidths may by > 30 Tb/s • CMOS can integrate smart network function ( ~10 Tb/s network router on a CMOS chip) • CMOS speed can match optical network speed (~10 GHz) • Optics join with mainstream CMOS (From David Miller, stanford, 2001) • VCSEL 1024 (32x32) @ 2002 4096 (64x64) @ 2007 • LED 4096 (64x64) @ 2002 16K (128x128) @ 2007 • 2D modulator 4096 (64x64) @ 2002 16K (128x128) @ 2007 • Detector 4096 (64x64) @ 2002 16K (128x128) @ 2007 • Waveguide 32~64 (2D) @ 2002 500~1000 (2D) @ 2007 • Free-space 4096 (64x64) @ 2002 16K (128x128) @ 2007 (From SIA and OIDA, 1997)

  7. Parallel Optical Interconnection Optical Communication Protocol Bus Architecture VCSEL/PD Packaging Data Bus 2010 target of optoelectronic processor Single I/O channel bandwidth > 1 Gbit/s Number of parallel channels > 1000 Power consumption per channel <1 mW (From the roadmap of MEL-ARI OPTO, 1999) Near-term target • Interconnection by optics upto terabit memory with general-purpose CPU

More Related