1 / 18

A Survey of Selected Radio Telescope Receiver Types

A Survey of Selected Radio Telescope Receiver Types. Dana Whitlow Microwave Receiver Specialist, Arecibo Observatory Denis Urbain Microwave Receiver Specialist, Arecibo Observatory. In this talk we will consider several types of receivers: Single feed Focal plane arrays

lilika
Télécharger la présentation

A Survey of Selected Radio Telescope Receiver Types

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Survey of Selected Radio Telescope Receiver Types Dana Whitlow Microwave Receiver Specialist, Arecibo Observatory Denis Urbain Microwave Receiver Specialist, Arecibo Observatory

  2. In this talk we will consider several types of receivers: • Single feed • Focal plane arrays > Traditional (Arecibo ALFA, Parkes MB20) > Phased array (AO-40; upcoming at Arecibo) > Incoherent detector array (USRA SOFIA, GBT Mustang)

  3. Single-beam versus Multi-beam • Single beam (single pixel) operation seems like a waste of a perfectly good (well, almost) optical system. It’s especially inefficient for survey work. • Multiple beams permit considerably faster survey work, but having them is definitely an extra-cost (and extra-complication) option.

  4. G. Cortes-Medellin, K.F. Warnick, B. D. Jeffs, G. Rajagopalan, P. Perillat, M. Elmer, D. Carter, V. Asthana, T. Webb, A. Vishwas. “Field of View Characterization of Arecibo Radio Telescope with a Phased Array Feed”. IEEE Antennas and Prop Symposium, Spokane, WA, Jul 2011

  5. ALFA’s 7-ELEMENT CLOSE-PACKED FEED HORN ARRAY

  6. TRADITIONAL FOCAL PLANE ARRAY • Receivers are independent, with no phase connection. • Therefore each feed must take individual responsibility for matching its footprint to the main reflector, setting a minimum size requirement. • Feeds of this size (always too large) cannot adequately spatially sample the electromagnetic field configuration at the focal plane to correct for off-axis aberrations and permit creation of a pattern of contiguous beams.

  7. Example of Off-axis Aberration (this is primarily “coma”)

  8. FOCAL PLANE PHASED ARRAY • Here the array comprises a grid of small antenna elements spaced by slightly less than l/2, thereby meeting the Nyquist criterion for full spatial sampling of the electric field configuration over the focal plane. The elements are often implemented as shortened “half-wave” dipoles. • The outputs of the elements are vector summed with complex element- and beam-dependent weighting to produce the desired beam(s) on the sky. • Assuming that sufficient processing capability is available, simultaneous production of many beams is possible. • Beams can be well corrected for off-axis aberrations and (within reason) focus errors. • Within limits, pattern notches can be formed to mitigate RFI. • But there’s a catch: electrical interactions and noise coupling between the closely-packed elements seriously complicate the design process and tend to degrade overall noise performance.

  9. BYU 19-ELEMENT FOCAL PLANE PHASED ARRAY

  10. BYU 19-ELEMENT FOCAL PLANE PHASED ARRAY

  11. INCOHERENT DETECTORARRAYS • Incredibly, heat detectors (such as bolometers and arrays thereof) can be made sensitive enough to be very useful for astronomy. • Greatest usefulness (for “radio” astronomy) is in the mm-wave and sub-mm-wave regimes where fundamental quantum behavior places severe limits on the noise performance of coherent receivers. • Incoherent detectors in general (including photon detectors as well as bolometers) extend astronomy upward in frequency all the way to the gamma ray regime. • A variety of useful detection mechanisms are known and used; all require cooling to sub-one-degree-Kelvin temperatures to work. In fact, usually well below one degree is required!

  12. SOME ADVANTAGES OF INCOHERENT DETECTION • Extends upper frequency limits of high-sensitivity radio astronomy beyond current practical (and even theoretical) limits of “conventional” (coherent) radio telescope receivers. • Uncouples the strict connection between beamwidth and effective aperture area that is characteristic of coherent receivers. This can sometimes be exploited to obtain a sensitivity advantage if diffraction-limited angular resolution is not required. • Very wide pre-detection bandwidth (tens of GHz) is available, which is really great for continuum work.

  13. SOME ISSUES WITH INCOHERENT DETECTION • No phase information is available from the detectors; thus neither off-axis aberration correction nor participation in interferometry is possible. • Sensors are inherently insensitive to polarization. • Spectroscopy is usually considered impractical since nothing can be done post-detection, and versatile or tight pre-detection filtering is extremely hard to implement. Some attempts have been made. • Extraordinary care is required in the design and implementation of the sensor (array) to keep out stray radiation everywhere in the electromagnetic spectrum, since the inherent bandwidth of a thermal sensor is essentially infinite. Accomplishing this adequately can be much more challenging than it looks at first glance. • Great attention is also required in the sensors’ output signal handling circuitry to avoid microphonics, 1/f noise, etc. • Cryogenic cooling is a challenge, especially in large arrays.

More Related