1 / 32

ISEN 315 Spring 2011 Dr. Gary Gaukler

ISEN 315 Spring 2011 Dr. Gary Gaukler. Hierarchy of Planning. Forecast of aggregate demand over time horizon Aggregate Production Plan : determine aggregate production and workforce levels over time horizon

luann
Télécharger la présentation

ISEN 315 Spring 2011 Dr. Gary Gaukler

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ISEN 315Spring 2011Dr. Gary Gaukler

  2. Hierarchy of Planning • Forecast of aggregate demand over time horizon • Aggregate Production Plan: determine aggregate production and workforce levels over time horizon • Master Production Schedule: Disaggregate the aggregate plan and determine per-item production levels • Materials Requirements Planning: Detailed schedule for production/replenishment activities

  3. Push and Pull Production Control The inventory control methods covered so far are useful for “independent demand” situations: Now, introduce methods to deal with “dependent demand”:

  4. Push and Pull Production Control “Push” system: Determines when and how much to produce based on forecasts of future demands “Pull” system: Initiates production of an item only when the item is requested

  5. Dependent Demand Effective use of dependent demand inventory models requires the following • Master production schedule • Bill of material (BOM) • Inventory availability • Purchase orders outstanding • Lead times

  6. Master Production Schedule • Specifies what is to be made and when • MPS is established in terms of specific products • The MPS is a statement of what is to be produced, not a forecast of demand

  7. MPS Example Example: How to determine MPS?

  8. Bill of Materials • List of components, ingredients, and materials needed to make product • Provides product structure • Items above given level are called parents • Items below given level are called children

  9. Level Product structure for “Awesome” (A) 0 A Std. 12” Speaker kit w/ amp-booster 1 B(2)Std. 12” Speaker kit C(3) 2 Std. 12” Speaker booster assembly E(2) E(2) F(2) Packing box and installation kit of wire, bolts, and screws D(2) D(2) G(1) 3 Amp-booster 12” Speaker 12” Speaker BOM Example

  10. Level Product structure for “Awesome” (A) 0 A Std. 12” Speaker kit w/ amp-booster 1 B(2)Std. 12” Speaker kit C(3) 2 Std. 12” Speaker booster assembly E(2) E(2) F(2) Packing box and installation kit of wire, bolts, and screws D(2) D(2) G(1) 3 Amp-booster 12” Speaker 12” Speaker BOM Example Part B: 2 x number of As = Part C: 3 x number of As = Part D: 2 x number of Bs + 2 x number of Fs = Part E: 2 x number of Bs + 2 x number of Cs = Part F: 2 x number of Cs = Part G: 1 x number of Fs =

  11. Lead Times • The time required to purchase, produce, or assemble an item • For purchased items – the time between the recognition of a need and the availability of the item for production • For production – the sum of the order, wait, move, setup, store, and run times

  12. Must have D and E completed here so production can begin on B Start production of D 1 week 2 weeks to produce D B 2 weeks E A 2 weeks 1 week E 1 week 2 weeks G C 3 weeks F 1 week D | | | | | | | | 1 2 3 4 5 6 7 8 Time in weeks Time-phased Product Structure

  13. Determining Gross Requirements • Starts with a production schedule for the end item – 50 units of Item A in week 8 • Using the lead time for the item, determine the week in which the order should be released – a 1 week lead time means the order for 50 units should be released in week 7 • This step is often called “lead time offset” or “time phasing”

  14. Determining Gross Requirements • From the BOM, every Item A requires 2 Item Bs – 100 Item Bs are required in week 7 to satisfy the order release for Item A • The lead time for the Item B is 2 weeks – release an order for 100 units of Item B in week 5 • The timing and quantity for component requirements are determined by the order release of the parent(s)

  15. Determining Gross Requirements • The process continues through the entire BOM one level at a time – often called “explosion” • By processing the BOM by level, items with multiple parents are only processed once, saving time and resources and reducing confusion

  16. Gross Requirements Plan

  17. gross requirements + allocations total requirements on hand scheduled receipts net requirements – + = available inventory The Logic of Net Requirements

  18. Net Requirements Plan

  19. Net Requirements Plan

  20. Net Requirements Plan • Starts with a production schedule for the end item – 50 units of Item A in week 8 • Because there are 10 Item As on hand, only 40 are actually required – (net requirement) = (gross requirement - on- hand inventory) • The planned order receipt for Item A in week 8 is 40 units – 40 = 50 - 10

  21. Net Requirements Plan • Following the lead time offset procedure, the planned order release for Item A is now 40 units in week 7 • The gross requirement for Item B is now 80 units in week 7 • There are 15 units of Item B on hand, so the net requirement is 65 units in week 7 • A planned order receipt of 65 units in week 7 generates a planned order release of 65 units in week 5

  22. Net Requirements Plan • A planned order receipt of 65 units in week 7 generates a planned order release of 65 units in week 5 • The on-hand inventory record for Item B is updated to reflect the use of the 15 items in inventory and shows no on-hand inventory in week 8

  23. Lot Sizing For MRP Systems Given: Net requirements Determine: When and how much to produce / order

  24. Simplest Lot Sizing: Lot-for-Lot

  25. Lot Sizing For MRP Systems Assumptions: • Consider only one item • Demand known and deterministic • Finite horizon • No shortages • No capacity constraints

  26. Lot Sizing For MRP Systems Problem formulation:

  27. Lot Sizing For MRP Systems Does this look like an EOQ problem?

  28. EOQ Lot Size Example Holding cost = $1/week; Setup cost = $100; Average weekly gross requirements = 27; EOQ = 73 units

  29. How did we obtain EOQ?

  30. Lot Sizing: Silver-Meal Heuristic In any given period, produce to cover demand in a future period as long as the average cost per period is reduced by doing so Algorithm: • Start in period 1. Calculate C(t): average per-period cost if all units for next t periods produced in period 1. • Select lowest t such that C(t)<C(t+1): t* • Produce t* in period 1 • Repeat, starting from period t*+1

  31. Silver-Meal Example Assume net requirements are 18, 30, 42, 5, 20 Setup cost for production is $80 Holding cost $2 per unit per period

More Related