1 / 18

Number of grid points per wavelength

Number of grid points per wavelength. u_t + u_x = 0 u(x, 0) = sin (Lπx) 0<x<1. Method1: Upwind(1st order) Method2: Lax-Wendroff(2nd order) Method3: Traditional 4th order Method4: Compact schemes (4th order). Upwind L=2. h error grid points per wavelength

lucia
Télécharger la présentation

Number of grid points per wavelength

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Number of grid points per wavelength

  2. u_t + u_x = 0 • u(x, 0) = sin (Lπx) • 0<x<1

  3. Method1: Upwind(1st order) • Method2: Lax-Wendroff(2nd order) • Method3: Traditional 4th order • Method4: Compact schemes (4th order)

  4. Upwind L=2 • h error grid points per wavelength • 1/40 0.9484 40 • 1/80 0.7725 80 • 1/160 0.5230 160 • 1/320 0.3093 320 • 1/640 0.1689 640 • 1/1280 0.0884 1280 • 1/2560 0.0452 2560

  5. Upwind L=4 • h error grid points per wavelength • 1/80 0.9973 40 • 1/160 0.9483 80 • 1/320 0.7725 160 • 1/640 0.5230 320 • 1/1280 0.3093 640 • 1/2560 0.1689 1280 • 1/3000 0.1461 1500

  6. Lax-Wendroff • L h error grid points per wavelength • 2 1/120 0.0241 120 • 4 1/340 0.0240 170 • 8 1/960 0.0241 240 • 16 1/2720 0.0240 340

  7. Traditional 4th order • L h error grid points per wavelength • 2 1/30 0.0050 30 • 4 1/70 0.0054 35 • 8 1/170 0.0050 42.5 • 16 1/400 0.0052 50

  8. Compact schemes • L h error grid points per wavelength • 2 1/30 0.0017 30 • 4 1/70 0.0018 35 • 8 1/170 0.0017 42.5 • 16 1/400 0.0017 50

  9. High Order Schemes for Resolving Waves: Number of Points per Wavelength

  10. First derivative • f(x)=sin(kx) • TEk=c*(Δx)^(p-1)*k^p • p is the order of numerical scheme • TEk= c*(1/N)^(p-1)*k^p , Δx=1/N • If k changes to m, and we want TE to be unchanged . • TEk=TEm • (1/N)^(p-1)*k^p= (1/a*N)^(p-1)*m^p, • a=(m/k)^(p/(p-1)).

  11. a=(m/k)^(p/(p-1)). • If p>>0, then a~m/k. So, if m=2k, then the number of grid points is also doubled since a~2. But if p is small, say p=2,then when m=2k, the number of grid points should be multiplied by 4 to insure that TE is unchanged.

  12. Higher derivative • (1/N)^(p-q)*k^p=(1/a*N)^(p-q)*m^p, • a=(m/k)^(p/(p-q)).

  13. 1 st order scheme • Scheme N error IC • UW 32 0.19 sin(x) • UW 128 0.19 sin(2x) • L-F 32 0.43 sin(x) • L-F 128 0.43 sin(2x) • a=2^2=4

  14. 2 nd order scheme • Scheme N error IC • FD2 32 0.028 sin(x) • FD2 91 0.028 sin(2x) • L-W 32 0.021 sin(x) • L-W 91 0.021 sin(2x) • a=2^(3/2)=2.83

  15. 4 th order scheme • Scheme N error IC • FD4 32 0.000223 sin(x) • FD4 75 0.000236 sin(2x) • FDC4 32 0.0000404 sin(x) • FDC4 75 0.0000427 sin(2x) • a=2^(5/4)=2.34

  16. 6 th order, a=2^(7/6)=2.24 • 8 th order, a=2^(9/8)=2.18

  17. Upwind: L changes from 2 to 4, under the same error, • 1/h multiplied by 4. • grid points per wavelength multiplied by 2. • L-W: L=2, 4, 8, 16, under the same error. • 1/h multiplied by 2.83 • grid points per wavelength multiplied by 1.42

  18. Traditional 4th order • L=2, 4, 8, 16, under the same error. • 1/h multiplied by 2.37 • grid points per wavelength multiplied by 1.19 • Compact schemes • L=2, 4, 8, 16, under the same error. • 1/h multiplied by 2.37 • grid points per wavelength multiplied by 1.19

More Related