1 / 20

MARS15 simulations for MERIT

Fermilab. MARS15 course. MARS15 simulations for MERIT. Sergei Striganov Fermilab. MARS15 course Fermilab, May 24, 2007. MERIT experiment. Experiment geometry . Beam description. Detectors description. Energy spectra, time distribution …. OUTLINE. Target for muon collider.

marycharris
Télécharger la présentation

MARS15 simulations for MERIT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fermilab MARS15 course MARS15 simulations for MERIT Sergei Striganov Fermilab MARS15 course Fermilab, May 24, 2007

  2. MERIT experiment. Experiment geometry. Beam description. Detectors description. Energy spectra, time distribution … OUTLINE

  3. Target for muon collider

  4. MERIT experiment • The MERIT experiment, to be run at CERN in 2007, is a proof-of-principle test for a target system that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino factory complex or a muon collider. The target system is based on a free mercury jet that intercepts an intense proton beam inside a 15-T solenoidal magnetic. The Hg jet delivery system will generate a 1-cm diameter mercury stream with velocities up to 20 m/s.

  5. ! OPT ! target target -2 3 2 0. 0. 0. 0. 0.5 50. ! target to plenum tar2pl -2 3 2 -5.431 0. 54.128 0. 0.5 4.4 ! target support tarsup -2 1 4 0. 0. -3.3 7.845 8.5 60.3 ! mercury suppl mresup -2 1 2 3.18 -4.52 -7.615 0. 0.953 65.885 ! mercury suppl tube mresup -2 1 4 3.18 -4.52 -8.25 0.953 1.27 65.25 !primary containment: windows4 pmwin4 -1 4 8 3.2975 0. -67.79 0.05 1.745 6.595 !primary containment: box inner pmbxin -1 1 5 0. 0. -8.25 6.595 1.745 65.25 !primary containment: box outer pmbxou -1 1 4 0. 0. -8.25 7.23 2.38 65.25 !primary containment: cilinder pmbxou -2 1 4 0. 0. -8.25 7.615 7.845 65.25 !beam windows5: cilinder tagwi5 -2 1 8 0. 0. -73.55 0 7.845 0.05 !beam windows3: cilinder tagwi3 -2 1 8 -3.828 0. 57.05 0 0.5 0.05 !beam windows2: cilinder tagwi2 -2 1 8 -4.503 0. 67.105 0 0.5 0.05 !windows1 tagwi1 -2 1 8 -4.523 0. 69.645 0. 1. 0.05 !windows12 support air winair -2 1 5 -4.523 0. 68.425 0. 1. 1.27 !windows12 support w12sup -2 1 4 -4.523 0. 68.425 1. 2. 1.27 !beam air beair -2 2 5 -4.1656 0. 62.08 0. 0.5 5.2 ! target air tarvac -2 1 5 0. 0. -8.25 0. 8.5 65.25 ! plenum downstreem wall plwdws -2 1 4 0. 0. 57.635 0. 7.845 0.635 ! plenum side wall plwdws -2 1 4 0. 0. 62.08 7.21 7.845 3.81 ! plenum upstreem wall plwdws -2 1 4 0. 0. 66.52 0. 7.845 0.635 ! plenum Hg plwdws -2 1 2 0. 0. 62.08 0. 7.21 3.81 ! solenoid solen1 -2 1 3 0. 0. 0. 9.9 10.2 50. 1 1 solen2 -2 1 1 0. 0. 0. 10.2 19.7 50. 1 1 solen3 -2 1 3 0. 0. 0. 19.7 20.2 50. 1 1 solen4 -2 1 1 0. 0. 0. 20.2 29.7 50. 1 1 solen5 -2 1 3 0. 0. 0. 29.7 30.2 50. 1 1 solen6 -2 1 1 0. 0. 0. 30.2 39.7 50. 1 1 solen7 -2 1 3 0. 0. 0. 39.7 40.0 50. 1 1 ! creostat outer up cylinder croucy -2 1 4 0. 0. -6.30 50.58 51.05 61.3 1 1 ! creostat inner up cylinder criucy -2 1 4 0. 0. -4.30 46.20 47.20 59.3 1 1 ! creostat support vertical crsuve -2 1 4 0. 0. -53.4 9.90 40.00 .40 1 1 ! creostat support horizontal crsuho -2 1 4 0. 0. 0.6 40.00 41.60 54.40 1 1 ! creostat-1 inner media inside air?????? crinme1 -2 1 5 0. 0. -4.30 41.60 46.20 59.3 1 1 ! creostat-2 inner media inside what is IM=3 crinme2 -2 1 3 0. 0. 52.50 9.9 41.60 2.5 1 1 ! creostat-3 inner media inside what is IM=3 crinme3 -2 1 3 0. 0. -51.5 9.9 41.60 1.5 1 1 ! creostat-4 inner media inside what air ? crinme4 -2 1 5 0. 0. -58.7 9.9 46.20 4.9 1 1 ! creostat inner down cylinder cridcy -2 1 4 0. 0. -4.30 9.42 9.9 59.3 1 1 Extended geometry - I

  6. ! creostat outer down cylinder crodcy -2 1 4 0. 0. -6.30 8.5 8.8 61.3 1 1 ! creostat inner conus inside what air criico -4 1 5 0. 0. -66.20 9.90 17.73 9.90 46.20 2.61 1 1 ! creostat upside wall cylinder cruwcy -2 1 4 0. 0. 56. 8.5 51.05 1. 1 1 ! creostat inner conus outside crioco -4 1 4 0. 0. -66.71 9.42 13.27 9.42 47.20 3.10 1 1 ! creostat outside conus inside IM=0 croico -4 1 0 0. 0. -70.40 8.80 19.115 8.80 50.75 2.80 1 1 ! creostat outside conus inside croico -4 1 4 0. 0. -70.55 8.50 18.87 8.50 51.05 2.95 1 1 ! creostat-1 outer media inside IM=0 crinm1 -2 1 0 0. 0. -6.30 47.20 50.58 61.3 1 1 ! creostat-2 outer media inside IM=0 crinm2 -2 1 0 0. 0. -65.60 9.90 50.58 2. 1 1 ! creostat3 outer media inside IM=0 crinm3 -2 1 0 0. 0. -6.30 8.80 9.42 61.3 1 1 ! tube between target and second: air tub12a -2 1 5 0. 0. -92.93 0 16.94 19.43 1 1 ! tube between target and second: wall tub12w -2 1 4 0. 0. -92.93 0 17.17 19.43 1 1 ! pump: central tube Hg, position IN pumphg -2 1 2 -46.23 0. -171.95 0. 11.43 36.58 1 1 0 ! pump: central tube wall, position IN pumpcw -2 1 4 -46.23 0. -171.95 11.43 12.70 36.58 1 1 0 ! pump: left tube hyd., position IN pumpsp -2 1 7 -46.23 34.54 -171.45 0. 6.35 29.72 1 1 0 ! pump: left tube wall, position IN pumpwp -2 1 4 -46.23 34.54 -171.45 6.35 7.62 29.72 1 1 0 ! pump: right tube hyd., position IN pumpsp -2 1 7 -46.23 -34.54 -171.45 0. 6.35 29.72 1 1 0 ! pump: right tube wall, position IN pumpwp -2 1 4 -46.23 -34.54 -171.45 6.35 7.62 29.72 1 1 0 ! pump: tie beam, position IN, check x,z sizes !!!!! pumptb -1 1 4 -46.23 0. -213.61 5.08 40.64 5.08 1 1 1 ! pump: central tube Hg, position OUT hit wall!!!!!!!!!!! !pumphg -2 1 2 -46.23 0. -197.35 0. 11.43 61.98 1 1 0 ! sump tank inner Hg sumpin -1 1 2 -21.59 0. -171.96 3.81 29.85 23.50 1 1 ! sump tank inner Air sumpin -1 1 5 -12.7 0. -171.96 12.07 29.85 23.50 1 1 ! sump tank outer sumpod -1 1 4 -12.7 0. -171.96 12.70 30.48 24.13 1 1 1 !vapor filter vafich -1 1 12 23.66 20.79 -220.98 2.54 21.59 30.48 1 1 1 ! second containment. outer box. top secoup -1 1 6 26.65 0. -185.42 0.45 50.15 73.66 1 1 1 ! second containment. outer box. bootom secobo -1 1 4 -71.00 0. -185.42 0.3 50.15 73.66 1 1 1 ! second containment. outer box. upstream secofe -1 1 4 -22.25 0. -112.06 48.45 50.15 0.3 1 1 1 ! second containment. outer box. downstream. window6 secwi6 -2 1 8 12.70 0. -258.78 0. 7.62 0.05 1 1 ! second containment. outer box. downstream. window6 container secco6 -2 1 5 12.70 0. -258.78 0. 7.62 0.3 1 1 ! second containment. outer box. downstream. window7 container secco7 -2 1 4 12.70 0. -261.62 7.62 7.92 2.54 1 1 ! second containment. outer box. downstream. window7 secwi7 -2 1 8 12.70 0. -264.11 0. 7.62 0.05 1 1 ! second containment. outer box. downstream secola -1 1 4 -22.25 0. -258.78 48.45 50.15 0.3 1 1 1 ! second containment. outer box. side pos secosp -1 1 4 -22.25 49.85 -185.42 50.15 0.3 73.66 1 1 1 ! second containment. outer box. side neg secosn -1 1 4 -22.25 -49.85 -185.42 50.15 0.3 73.66 1 1 1 ! detector top detec1 -1 1 9 32.10 0. -128.26 5. 8. 16.5 1 1 1 ! detector backside detec2 -1 1 13 -62.7 0. -264.08 8. 16.5 5. 1 1 1 !beam attenuator iron big beatir -1 2 11 6. 0. -739.8 80. 80. 40. 1 1 1 !beam attenuator concrete downstream beatco -1 2 10 10. 0. -799.8 80. 80. 20. 1 1 1 Extended geometry - II

  7. !beam attenuator iron right ear bairer -1 2 11 0.64 -60. -659.8 80. 20. 40. 1 1 1 !beam attenuator iron left ear beirel -1 2 11 0.64 60. -659.8 80. 20. 40. 1 1 1 !beam attenuator concrete left becoel -1 2 10 3.32 -100. -699.8 80. 20. 80. 1 1 1 !detector at 90 degree scide1 -1 11 14 0. -249. 0. 6. 6. 0.05 1 1 1 !detector at -45 degree scide2 -1 12 14 0. -249. -249. 6. 6. 0.05 1 1 1 !detector at -22 degree scide3 -1 13 14 0. -249. -610. 6. 6. 0.05 1 1 1 !detector at -10.22 degree scide4 -1 14 14 0. -110 -610. 6. 6. 0.05 1 1 1 !detector at -7.47 degree scide5 -1 15 14 0. -80. -610. 6. 6. 0.05 1 1 1 !detector at -4.69 degree scide6 -1 16 14 0. -50. -610. 6. 6. 0.05 1 1 1 !detector at 4.69 degree scide7 -1 17 14 0. 50. -610. 6. 6. 0.05 1 1 1 !detector at 7.47 degree scide8 -1 18 14 0. 80 -610. 6. 6. 0.05 1 1 1 !detector at 10.22 degree scide9 -1 19 14 0. 110 -610. 6. 6. 0.05 1 1 1 !detector at 45 degree scide10 -1 20 14 0. 134 -134. 6. 6. 0.05 1 1 1 !detector at 90 degree scide11 -1 11 14 0. 134 0. 6. 6. .05 1 1 1 !detector at 9.17 degree scide12 -1 21 14 0. 134 -830. 6. 6. .05 1 1 1 !detector at 0 degree to beem scide13 -1 0 14 55.69 0. -830. 6. 6. 0.05 1 1 1 !tunnel wall from z=+200 to z=-1000 ! angle = 0. !tt2a wall bottom air !waboai -1 2 5 -236.2 -58.45 -400. 40. 276.85 600. 1 1 1 !tt2a wall side air !wasiai -1 2 5 1.95 -58.45 -400. 121.95 200.65 600. 1 1 1 !tt2a wall side concrete !wasiai -1 2 8 -36.2 -58.45 -400. 160. 276.85 600. 1 1 !tt2a wall top concrete !watoco -2 2 8 57.09 -58.45 -400. 200.65 280.11 600. 1 1 1 ! angle = -3.8388 to turn x01=x0*cos+z0*sin; z01=-x0*sin+z0*cos !tt2a wall bottom air waboai -1 2 5 -211.66 -58.45 -413.51 40. 276.85 600. 1 1 1 !tt2a wall side air wasiai -1 2 5 26.05 -58.45 -399.16 121.95 200.65 600. 1 1 1 !tt2a wall side concrete wasiai -1 2 10 -12.03 -58.45 -397.09 160. 276.85 600. 1 1 !tt2a wall top air watair -2 2 5 81.09 -58.45 -395.83 0. 200.65 600. 1 1 1 !tt2a wall top concrete watoco -2 2 10 81.09 -58.45 -395.83 200.65 280.11 600. 1 1 1 TR1 0. 0. 0. 0. 0. 0. TR2 0. 0. 0. 0. -3.8388 0. TR3 0. 0. 0. 0. -5.7296 0. TR4 0. 0. 0. 0. 30. 0. TR11 0. 0. 0. 90. 0. 0. TR12 0. 0. 0. -45. 0. 0. TR13 0. 0. 0. -22.21 0. 0. TR14 0. 0. 0. -10.22 0. 0. TR15 0. 0. 0. -7.47 0. 0. TR16 0. 0. 0. -4.69 0. 0. TR17 0. 0. 0. 4.69 0. 0. TR18 0. 0. 0. 7.47 0. 0. TR19 0. 0. 0. 10.22 0. 0. TR20 0. 0. 0. 45. 0. 0. TR21 0. 0. 0. 9.17 0. 0. stop Extended geometry - III

  8. MERIT geometry in MARS

  9. MERIT geometry in MARS

  10. Beam description - I

  11. SUBROUTINE BEG1(JJ,W,E,X,Y,Z,DCX,DCY,DCZ,TOFF,INTA,NREG1) C........................................... C RE-DEFINES EACH OR ANY OF THE 12 PARAMETERS C OF INITIAL SOURCE PARTICLES C C ARRANGE A POINT-LIKE INTERACTION IF INTA=1 C ONE CAN ASSIGN A CORRESPONDING MATERIAL INDEX IM TO IT C C ONE CAN DEFINE NREG1 - THE SOURCE REGION NUMBER C (TYPICALLY FOR NEUTRINO SCORING) C C PARTICLE TAGGING IN 'MTAGG' SOURCE ZONES OF 'ETGG' ENERGY C INTERVALS FOR 'NTAGG' DETECTOR ZONES C DEFAULTS: NUMTAG=6, MTAGG=0, INTAG=1, IETAG=4 C C INTAG parameter of tally2.inc can be used as a flag for a source C particle to propogate it through the code to WRTSUR, RAYN, RAYMU etc. C C C REVISION: 01-DEC-2005 C C........................................... IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) LOGICAL IND INCLUDE 'azwmat.inc' INCLUDE 'biount.inc' INCLUDE 'blreg1.inc' INCLUDE 'cmasnsg.inc' COMMON/MATINT/IM : /LOGIND/IND(20) : /BG/E0,ELEAK(3),ELGA,ELEN,ELEAMU,ENEUNO,ALIO(3),BLEAK(3,2) : /BLTOFF/TOFMIN,TOFMAX,TOFSHF : /SELEC2/CS,SS,CH,SH : /HIST/NI,NSTOP,NUPRI,NHIPR PARAMETER (PMA=0.938271998d0) PARAMETER (PI=3.141592653589793227D+00) C+++ INSERT YOUR SOURCE TERM HERE +++ DCX0=6.7D-2 DCY0=0.D0 DCZ0=-SQRT(1.d0-dcx0*dcx0-dcy0*dcy0) Z0=1.D2 x0=z0*dcx0/dcz0 y0=z0*dcy0/dcz0+2.5d-1 c --- vertical parameters from Adrian betv=2.79d2 alpv=0.26d0 sigmav=0.117d0 rv=sqrt(-2.d0*log(rndm(-1.)))*sigmav tv=2.d0*pi*rndm(-1.) xv=rv*cos(tv) xvp=(rv*sin(tv)-alpv*xv)/betv x=x0+xv dcx=dcx0+xvp c --- horizontal parameters from Adrian beth=2.79d2 alph=0.53d0 sigmah=0.129d0 rh=sqrt(-2.d0*log(rndm(-1.)))*sigmah th=2.d0*pi*rndm(-1.) xh=rh*cos(th) xhp=(rh*sin(th)-alph*xh)/beth y=y0+xh dcy=dcy0+xhp DCZ=-SQRT(1.D0-DCX*DCX-DCY*DCY) c --- momentum distribution is gaussian with dp/p=dpp from Harold (check!!!) p0=24.d0 dpp=2.d-2 call norran(rpp) pp=p0*(1.d0+dpp*rpp) e=sqrt(pp**2+pma**2)-pma xt=-z0*dcx/dcz+x yt=-z0*dcy/dcz+y call hfill(21,sngl(xt),0.,1.) call hfill(22,sngl(yt),0.,1.) call hfill(23,sngl(E),0.,1.) C++++++++++++++++++++++++++++++++++++ RETURN END Beam description -II

  12. Simulations tasks Particle fluxes, energy deposition, absorbed doses and residual activities in experimental hall Absorbed dose and activation of mercury vapor analyzer Activation of hydraulic fluid Activation of mercury vapor filter Secondary particles production

  13. Radiation levels Absorbed dose in Gy/3 1015 protons 30day/1day residual activity in mSv/h

  14. Radiation levels in detector elements • Absorbed dose in mercury vapor analyzer is 630 Gy (top) and 14 Gy (back). Acceptable level is 50-100 Gy. • Residual dose rate on contact after 5 day of irradiation and 1 hour of cooling: mercury vapor analyzer – 0.17 mSv/hr (top), 0.007 mSv/hr (back), hydraulic fluid – 0.021 mSv/hr, mercury vapor filter -0.18 mSv/hr. • Acceptable level is about 1 mSv/hr at FNAL, 0.1(?) mSv/hr at CERN

  15. Detector positions and charged hadron flux (1/cm2 per 3 1013 protons on target) No magnetic field 15 Tesla

  16. Detector positions and charged hadron flux (1/cm2 per 3 1013 protons on target) 15 Tesla No magnetic field

  17. SUBROUTINE MHSETU C........................................................ C SET UP HISTOGRAM ARRAYS C HISTOGRAM ENTRY FOR USER-DEFINED HISTOGRAMING C C HISTOGRAM ID AVAILABLE: 601 < ID < 700 C C HISTOGRAM TYPE: C IHTYP = 1 - COLLISION C IHTYP = 2 - STEP C IHTYP = 3 - ENERGY DEPOSITION C C----- C CREATED: 15-JUN-2000 BY NVM C LAST CHANGE: 09-JUN-2003 BY NVM C----- C........................................................ IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) ************************************************************* * REMEMBER, HBOOK IS A SINGLE PRECISION ENGINE * DON'T FORGET THE 'REAL' DECLARATIONS SUCH AS: * * REAL AA,ELB,X1,X2,Y1,Y2 * CALL HBOOKB(ID,AA,NEB,ELB,0.) * * CALL HBOOK2(ID,TITLE,NX,X1,X2,NY,Y1,Y2,0.) ************************************************************* C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PARAMETER (NPAR=8) PARAMETER (NDE=13) CHARACTER*4 CPLIST(NPAR),CDLIST(NDE),NAMP,NAMD DATA CPLIST /'CHAR','NEUT','MUCH','ELEC','MECH','NEUT', & 'GAMM','PROT'/ DATA CDLIST /'DET1','DET2','DET3','DET4','DET5','DET6','DET7', & 'DET8','DET9','DE10','DE11','DE12','DE13'/ REAL EMAX(NDE) DATA EMAX/2*1.,2.,6*6.,2*1.,6.,10./ CALL HBOOK1 (21, 'dn/dv target', 200,-2.,2., 0.) CALL HBOOK1 (22, 'dn/dh target', 200,-2.,2., 0.) CALL HBOOK1 (23, 'dn/dp target', 200,20.,26., 0.) DO ID=1,NDE NAMD=CDLIST(ID) DO IP=1,NPAR NAMP=CPLIST(IP) IH=1000*ID+100*IP C dn/de total IH1=IH+10 CALL HBOOK1 (IH1, 'dn/de total ' & //NAMP//' in ' //NAMD, 100,0.,emax(id), 0.) C dn/de atten IH1=IH+11 CALL HBOOK1 (IH1, 'dn/de atten ' & //NAMP//' in ' //NAMD, 100,0.,emax(id), 0.) C dn/de wall IH1=IH+12 CALL HBOOK1 (IH1, 'dn/de wall ' & //NAMP//' in ' //NAMD, 100,0.,emax(id), 0.) C dn/de other IH1=IH+13 CALL HBOOK1 (IH1, 'dn/de other ' & //NAMP//' in ' //NAMD, 100,0.,emax(id), 0.) C dn/dt total IH1=IH+1 CALL HBOOK1 (IH1, 'dn/dt total ' & //NAMP//' in ' //NAMD, 100,0.,300., 0.) IF(IP.eq.1) then C dn/dt atten IH1=IH+2 CALL HBOOK1 (IH1, 'dn/dt atten ' & //NAMP//' in ' //NAMD, 100,0.,300., 0.) C dn/dt wall IH1=IH+3 CALL HBOOK1 (IH1, 'dn/dt wall ' & //NAMP//' in ' //NAMD, 100,0.,300., 0.) C dn/dt other IH1=IH+4 CALL HBOOK1 (IH1, 'dn/dt other ' & //NAMP//' in ' //NAMD, 100,0.,300., 0.) endif ENDDO ENDDO RETURN END Histogram booking

  18. SUBROUTINE MFILL(IHTYP,NREG,IM,JJ,E1,E2,DELE,W,X1,Y1,Z1,X2,Y2,Z2, & DCX,DCY,DCZ,STEP,TOF,NI,IDPRC) C........................................................ C HISTOGRAM ENTRY FOR USER-DEFINED HISTOGRAMING C HISTOGRAM ID AVAILABLE: 601 < ID < 700 C C CALL TYPE: C IHTYP = 1 - COLLISION C IHTYP = 2 - STEP ("TRACK-LENGTH") C IHTYP = 3 - ENERGY DEPOSITION (LOCAL OR ON THE STEP) C----- C........................................................ IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) ************************************************************* C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INCLUDE 'cmasnsg.inc' dimension isort(40) data isort/8,6,5,5,5,5,3,3,7,4,4,29*0/ C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if(ihtyp.eq.2) then if(nreg.GE.78.AND.NREG.LE.90) then idprc1=idprc TOF1=TOF NDET=NREG-77 ichar=nsg5(jj) nich=2-abs(ichar) ne=1000*ndet+nich*100+10 call hfill(ne,sngl(e1),0.,sngl(w)) nt=1000*ndet+nich*100+1 call hfill(nt,sngl(tof*1.D9),0.,sngl(w)) isa=isort(jj) if(isa.gt.0) then ne1=1000*ndet+isa*100+10 call hfill(ne1,sngl(e1),0.,sngl(w)) nt1=1000*ndet+isa*100+1 call hfill(nt1,sngl(tof*1.D9),0.,sngl(w)) endif endif endif RETURN END SUBROUTINE TAGPR(NREG,IM,JJ,W,E1,E2,X,Y,Z,STEP) C.................................................. IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N) COMMON & /BPRTAG/XORIG,YORIG,ZORIG,WORIG,EORIG,IORIG,KORIG,NRORIG,IMORIG & /HIST/NI,NSTOP,NUPRI,NHIPR C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - dimension isort(40) data isort/8,6,5,5,5,5,3,3,7,4,4,29*0/ INCLUDE 'cmasnsg.inc' if(nreg.ge.78.and.nreg.le.90) then ndet=nreg-77 is=13 if(nrorig.ge.73.and.nrorig.le.77) is=11 if(nrorig.ge.91.and.nrorig.le.94) is=12 ichar=nsg5(jj) nich=2-abs(ichar) ne=1000*ndet+100*nich+is call hfill(ne,sngl(e1),0.,sngl(w)) nt=0 if(nich.eq.1) then NT=1000*ndet+100*nich+is-9 call hfill(nt,sngl(tof*1.d9),0.,sngl(w)) endif isa=isort(jj) if(isa.gt.0) then ne1=1000*ndet+100*isa+is call hfill(ne1,sngl(e1),0.,sngl(w)) endif endif RETURN END Histogram filling

  19. Energy spectra ( 0 degree detector). Blue lines – all particles, red lines- particles created in attenuator.

  20. Time distributions in 0 degree detector

More Related