1 / 49

CWNA Guide to Wireless LANs, Second Edition

CWNA Guide to Wireless LANs, Second Edition. Chapter Four IEEE 802.11 Physical Layer Standards. Objectives. List and describe the wireless modulation schemes used in IEEE WLANs Tell the difference between frequency hopping spread spectrum and direct sequence spread spectrum

melosa
Télécharger la présentation

CWNA Guide to Wireless LANs, Second Edition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CWNA Guide to Wireless LANs, Second Edition Chapter Four IEEE 802.11 Physical Layer Standards

  2. Objectives • List and describe the wireless modulation schemes used in IEEE WLANs • Tell the difference between frequency hopping spread spectrum and direct sequence spread spectrum • Explain how orthogonal frequency division multiplexing is used to increase network throughput • List the characteristics of the Physical layer standards in 802.11b, 802.11g, and 802.11a networks CWNA Guide to Wireless LANs, Second Edition

  3. Introduction Figure 4-2: OSI data flow CWNA Guide to Wireless LANs, Second Edition

  4. Introduction (continued) Table 4-1: OSI layers and functions CWNA Guide to Wireless LANs, Second Edition

  5. Wireless Modulation Schemes • Four primary wireless modulation schemes: • Narrowband transmission • Frequency hopping spread spectrum • Direct sequence spread spectrum • Orthogonal frequency division multiplexing • Narrowband transmission used primarily by radio stations • Other three used in IEEE 802.11 WLANs CWNA Guide to Wireless LANs, Second Edition

  6. Narrowband Transmission • Radio signals by nature transmit on only one radio frequency or a narrow portion of frequencies • Require more power for the signal to be transmitted • Signal must exceed noise level • Total amount of outside interference • Vulnerable to interference from another radio signal at or near same frequency • IEEE 802.11 standards do not use narrowband transmissions CWNA Guide to Wireless LANs, Second Edition

  7. Narrowband Transmission (continued) Figure 4-3: Narrowband transmission CWNA Guide to Wireless LANs, Second Edition

  8. Spread Spectrum Transmission Figure 4-4: Spread spectrum transmission CWNA Guide to Wireless LANs, Second Edition

  9. Spread Spectrum Transmission (continued) • Advantages over narrowband: • Resistance to narrowband interference • Resistance to spread spectrum interference • Lower power requirements • Less interference on other systems • More information transmitted • Increased security • Resistance to multipath distortion CWNA Guide to Wireless LANs, Second Edition

  10. Frequency Hopping Spread Spectrum (FHSS) • Uses range of frequencies • Change during transmission • Hopping code: Sequence of changing frequencies • If interference encountered on particular frequency then that part of signal will be retransmitted on next frequency of hopping code • FCC has established restrictions on FHSS to reduce interference • Due to speed limitations FHSS not widely implemented in today’s WLAN systems • Bluetooth does use FHSS CWNA Guide to Wireless LANs, Second Edition

  11. Frequency Hopping Spread Spectrum (continued) Figure 4-6: FHSS error correction CWNA Guide to Wireless LANs, Second Edition

  12. Direct Sequence Spread Spectrum (DSSS) • Uses expanded redundant code to transmit data bits • Chipping code: Bit pattern substituted for original transmission bits • Advantages of using DSSS with a chipping code: • Error correction • Less interference on other systems • Shared frequency bandwidth • Co-location: Each device assigned unique chipping code • Security CWNA Guide to Wireless LANs, Second Edition

  13. Direct Sequence Spread Spectrum (continued) Figure 4-7: Direct sequence spread spectrum (DSSS) transmission CWNA Guide to Wireless LANs, Second Edition

  14. Orthogonal Frequency Division Multiplexing (OFDM) • With multipath distortion, receiving device must wait until all reflections received before transmitting • Puts ceiling limit on overall speed of WLAN • OFDM: Send multiple signals at same time • Split high-speed digital signal into several slower signals running in parallel • OFDM increases throughput by sending data more slowly • Avoids problems caused by multipath distortion • Used in 802.11a networks CWNA Guide to Wireless LANs, Second Edition

  15. Orthogonal Frequency Division Multiplexing (continued) Figure 4-8: Multiple channels CWNA Guide to Wireless LANs, Second Edition

  16. Orthogonal Frequency Division Multiplexing (continued) Figure 4-9: Orthogonal frequency division multiplexing (OFDM) vs. single-channel transmissions CWNA Guide to Wireless LANs, Second Edition

  17. Comparison of Wireless Modulation Schemes • FHSS transmissions less prone to interference from outside signals than DSSS • WLAN systems that use FHSS have potential for higher number of co-location units than DSSS • DSSS has potential for greater transmission speeds over FHSS • Throughput much greater for DSSS than FHSS • Amount of data a channel can send and receive CWNA Guide to Wireless LANs, Second Edition

  18. Comparison of Wireless Modulation Schemes (continued) • DSSS preferred over FHSS for 802.11b WLANs • OFDM is currently most popular modulation scheme • High throughput • Supports speeds over 100 Mbps for 802.11a WLANs • Supports speeds over 54 Mbps for 802.11g WLANs CWNA Guide to Wireless LANs, Second Edition

  19. IEEE 802.11 Physical Layer Standards • IEEE wireless standards follow OSI model, with some modifications • Data Link layer divided into two sublayers: • Logical Link Control (LLC) sublayer: Provides common interface, reliability, and flow control • Media Access Control (MAC) sublayer: Appends physical addresses to frames CWNA Guide to Wireless LANs, Second Edition

  20. IEEE 802.11 Physical Layer Standards (continued) • Physical layer divided into two sublayers: • Physical Medium Dependent (PMD) sublayer: Makes up standards for characteristics of wireless medium (such as DSSS or FHSS) and defines method for transmitting and receiving data • Physical Layer Convergence Procedure (PLCP) sublayer: Performs two basic functions • Reformats data received from MAC layer into frame that PMD sublayer can transmit • “Listens” to determine when data can be sent CWNA Guide to Wireless LANs, Second Edition

  21. IEEE 802.11 Physical Layer Standards (continued) Figure 4-10: Data Link sublayers CWNA Guide to Wireless LANs, Second Edition

  22. IEEE 802.11 Physical Layer Standards (continued) Figure 4-11: PHY sublayers CWNA Guide to Wireless LANs, Second Edition

  23. IEEE 802.11 Physical Layer Standards (continued) Figure 4-12: PLCP sublayer reformats MAC data CWNA Guide to Wireless LANs, Second Edition

  24. IEEE 802.11 Physical Layer Standards (continued) Figure 4-13: IEEE LANs share the same LLC CWNA Guide to Wireless LANs, Second Edition

  25. Legacy WLANs • Two “obsolete” WLAN standards: • Original IEEE 802.11: FHSS or DSSS could be used for RF transmissions • But not both on same WLAN • HomeRF: Based on Shared Wireless Access Protocol (SWAP) • Defines set of specifications for wireless data and voice communications around the home • Slow • Never gained popularity CWNA Guide to Wireless LANs, Second Edition

  26. IEEE 802.11b Physical Layer Standards • Physical Layer Convergence Procedure Standards: Based on DSSS • PLCP must reformat data received from MAC layer into a frame that the PMD sublayer can transmit Figure 4-14: 802.11b PLCP frame CWNA Guide to Wireless LANs, Second Edition

  27. IEEE 802.11b Physical Layer Standards (continued) • PLCP frame made up of three parts: • Preamble: prepares receiving device for rest of frame • Header: Provides information about frame • Data: Info being transmitted • Synchronization field • Start frame delimiter field • Signal data rate field • Service field • Length field • Header error check field • Data field CWNA Guide to Wireless LANs, Second Edition

  28. IEEE 802.11b Physical Layer Standards (continued) • Physical Medium Dependent Standards: PMD translates binary 1’s and 0’s of frame into radio signals for transmission • Can transmit at 11, 5.5, 2, or 1 Mbps • 802.11b uses ISM band • 14 frequencies can be used • Two types of modulation can be used • Differentialbinary phase shift keying (DBPSK): For transmissions at 1 Mbps • Differential quadrature phase shift keying (DQPSK): For transmissions at 2, 5.5, and 11 Mbps CWNA Guide to Wireless LANs, Second Edition

  29. IEEE 802.11b Physical Layer Standards (continued) Table 4-2: 802.11b ISM channels CWNA Guide to Wireless LANs, Second Edition

  30. IEEE 802.11b Physical Layer Standards (continued) Table 4-3: IEEE 802.11b Physical layer standards CWNA Guide to Wireless LANs, Second Edition

  31. IEEE 802.11a Physical Layer Standards • IEEE 802.11a achieves increase in speed and flexibility over 802.11b primarily through OFDM • Use higher frequency • Accesses more transmission channels • More efficient error-correction scheme CWNA Guide to Wireless LANs, Second Edition

  32. U-NII Frequency Band Table 4-4: ISM and U-NII WLAN characteristics Table 4-5: U-NII characteristics CWNA Guide to Wireless LANs, Second Edition

  33. U-NII Frequency Band (continued) • Total bandwidth available for IEEE 802.11a WLANs using U-NII is almost four times that available for 802.11b networks using ISM band • Disadvantages: • In some countries outside U.S., 5 GHz bands allocated to users and technologies other than WLANs • Interference from other devices is growing • Interference from other devices one of primary sources of problems for 802.11b and 802.11a WLANs CWNA Guide to Wireless LANs, Second Edition

  34. Channel Allocation Figure 4-16: 802.11a channels CWNA Guide to Wireless LANs, Second Edition

  35. Channel Allocation (continued) Figure 4-17: 802.11b vs. 802.11a channel coverage CWNA Guide to Wireless LANs, Second Edition

  36. Error Correction • 802.11a has fewer errors than 802.11b • Transmissions sent over parallel subchannels • Interference tends to only affect one subchannel • Forward Error Correction (FEC): Transmits secondary copy along with primary information • 4 of 52 channels used for FEC • Secondary copy used to recover lost data • Reduces need for retransmission CWNA Guide to Wireless LANs, Second Edition

  37. Physical Layer Standards • PLCP for 802.11a based on OFDM • Three basic frame components: Preamble, header, and data Figure 4-18: 802.11a PLCP frame CWNA Guide to Wireless LANs, Second Edition

  38. Physical Layer Standards (continued) Table 4-6: 802.11a Rate field values CWNA Guide to Wireless LANs, Second Edition

  39. Physical Layer Standards (continued) • Modulation techniques used to encode 802.11a data vary depending upon speed • Speeds higher than 54 Mbps may be achieved using 2X modes Table 4-7: 802.11a characteristics CWNA Guide to Wireless LANs, Second Edition

  40. Physical Layer Standards (continued) Figure 4-19: Phase shift keying (PSK) CWNA Guide to Wireless LANs, Second Edition

  41. Physical Layer Standards (continued) Figure 4-20: Quadrature phase shift keying (QPSK) CWNA Guide to Wireless LANs, Second Edition

  42. Physical Layer Standards (continued) Figure 4-21: 16-level quadrature amplitude modulation (16-QAM) CWNA Guide to Wireless LANs, Second Edition

  43. Physical Layer Standards (continued) Figure 4-22: 64-level quadrature amplitude modulation (64-QAM) CWNA Guide to Wireless LANs, Second Edition

  44. IEEE 802.11g Physical Layer Standards • 802.11g combines best features of 802.11a and 802.11b • Operates entirely in 2.4 GHz ISM frequency • Two mandatory modes and one optional mode • CCK mode used at 11 and 5.5 Mbps (mandatory) • OFDM used at 54 Mbps (mandatory) • PBCC-22 (Packet Binary Convolution Coding): Optional mode • Can transmit between 6 and 54 Mbps CWNA Guide to Wireless LANs, Second Edition

  45. IEEE 802.11g Physical Layer Standards (continued) Table 4-8: IEEE 802.11g Physical layer standards CWNA Guide to Wireless LANs, Second Edition

  46. IEEE 802.11g Physical Layer Standards (continued) • Characteristics of 802.11g standard: • Greater throughput than 802.11b networks • Covers broader area than 802.11a networks • Backward compatible • Only three channels • If 802.11b and 802.11g devices transmitting in same environment, 802.11g devices drop to 11 Mbps speeds • Vendors can implement proprietary higher speed • Channel bonding and Dynamic turbo CWNA Guide to Wireless LANs, Second Edition

  47. Summary • Three modulation schemes are used in IEEE 802.11 wireless LANs: frequency hopping spread spectrum (FHSS), direct sequence spread spectrum (DSSS), and orthogonal frequency division multiplexing (OFDM) • Spread spectrum is a technique that takes a narrow, weaker signal and spreads it over a broader portion of the radio frequency band • Spread spectrum transmission uses two different methods to spread the signal over a wider area: FHSS and DSSS CWNA Guide to Wireless LANs, Second Edition

  48. Summary (continued) • OFDM splits a single high-speed digital signal into several slower signals running in parallel • IEEE has divided the OSI model Data Link layer into two sublayers: the LLC and MAC sublayers • The Physical layer is subdivided into the PMD sublayer and the PLCP sublayer • The Physical Layer Convergence Procedure Standards (PLCP) for 802.11b are based on DSSS CWNA Guide to Wireless LANs, Second Edition

  49. Summary (continued) • IEEE 802.11a networks operate at speeds up to 54 Mbps with an optional 108 Mbps • The 802.11g standard specifies that it operates entirely in the 2.4 GHz ISM frequency and not the U-NII band used by 802.11a CWNA Guide to Wireless LANs, Second Edition

More Related