1 / 47

ARZÉN

ARZÉN. 50 μg/L  10 μg/L. A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve  140 μg arzén/nap Biztonsági tényezők figyelembe vétele: 100 μg arzén/nap. Étel: 60-80 μg arzén/nap.

metta
Télécharger la présentation

ARZÉN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ARZÉN

  2. 50 μg/L 10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve  140 μg arzén/nap Biztonsági tényezők figyelembe vétele: 100 μg arzén/nap

  3. Étel: 60-80 μg arzén/nap 100 μg arzén/nap Ivóvíz általi fogyasztás: 20 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve 10 μg/L a maximálisan megengedhető arzén koncentráció ivóvízben

  4. Magyarországon... Étel: 20-30 μg arzén/nap 100 μg arzén/nap Ivóvíz általi fogyasztás: 70 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve 30 μg/L maximális koncentráció az ivóvízben megengedhető lenne

  5. Arzén Határérték: • Magyar: 50 μg/L • EU: 10 μg/L Előfordulás: oldott állapotú anyagjelenik meg felszínalatti vizeinkben A vizekben az arzén főként a redukált állapotú As(III), vagy az oxidált állapotú As(V) formájában jelenik meg

  6. Arzén – Magyarországi helyzet Forrás: ÁNTSZ (2000)

  7. As(V) előfordulása a pH függvényében As(III) előfordulása a pH függvényében Forrás: Fields et al. (2000)

  8. As(V) előfordulása a pH függvényében As(III) előfordulása a pH függvényében Forrás: Fields et al. (2000)

  9. Az arzén eredete Ásványok: többnyire vas- és kéntartalmú ásványokban jelenik meg Az arzén felszín alatti vizeinkben gyakran vas és mangán vegyületekkelegyütt fordul elő Adott körülmények között (például az ásványokban jelen lévő kén átalakulása miatt, a fémek és az arzén oldott állapotba kerülhetnek) Reduktív viszonyok között a vas, a mangán és az arzén oldott állapotú vegyületei stabilizálódnak

  10. Az arzén eltávolítására szolgáló technológiák

  11. Alkalmazott technológia Arzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárás speciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiák nyomás hatására történő szilárd/folyadék fázisszétválasztás (előtte koaguláció) vagy: oldott As eltávolítása (RO, nanoszűrés)

  12. Alkalmazott technológia Arzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárás speciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiák nyomás hatására történő szilárd/folyadék fázisszétválasztás (előtte koaguláció) vagy: oldott As eltávolítása (RO, nanoszűrés)

  13. Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással Lépései: Oxidáció Koaguláció (szilárd formává történő átalakítás) Szilárd/folyadék fázisszétválasztás (ülepítés, szűrés)

  14. Oxidáció: Klór Kálium-permanganát Ózon Levegő oxigénje – nem elég erős

  15. Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással A szilárd formává való alakulás a következő lépések szerint történik (a vas- illetve alumínium sókkal végzett koaguláció során): • precipitáció (kicsapatás): oldhatatlan AlAsO4 illetve FeAsO4képződése • koprecipitáció: az arzén beépülése az alumínium- illetve vas-hidroxid pelyhekbe • adszorpció: az arzenát [As(V)] vegyületek adszorpciója a vas- illetve alumínium-hidroxid pelyhek felületén

  16. Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl3) Az oldatban maradó egyensúlyi arzén-koncentráció (M) Forrás: Edwards (1994)

  17. Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl3) Az oldatban maradó egyensúlyi arzén-koncentráció (M) Forrás: Edwards (1994) adszorpció+koprecipitáció+(precipitáció) adszorpció

  18. Az eltávolítás hatékonyságát befolyásoló tényezők • arzén oxidációs száma • pH • alkalmazott koaguláns • koaguláns dózis • egyéb szennyezők (pl. foszfát, szilikát)

  19. Az eltávolítás hatékonyságát befolyásoló tényezők • arzén oxidációs száma • pH • alkalmazott koaguláns • koaguláns dózis • egyéb anionok (pl. foszfát)

  20. Az oxidáltsági fok szerepe As(V) eltávolítása FeCl3, Al2(SO4)3 és Bopac koagulánsokkal ~ 200 µg/L kezdeti arzénkoncentrációról (budapesti csapvízből készített modell oldat)

  21. Az oxidáltsági fok szerepe Az alumínium tartalmú koagulálószer nem alkalmas az As(III) kicsapatására, míg a vas-koaguláns bizonyos mértékben képes erre (azonban As(V)-t a vas-klorid lényegesen haté- konyabban csap ki) As(III) eltávolítása FeCl3, Al2(SO4)3 és Bopac koagulánsokkal ~ 200 µg/L kezdeti arzénkoncentrációról (csepeli nyersvízből készített modell oldat)

  22. Az eltávolítás hatékonyságát befolyásoló tényezők • arzén oxidációs száma • pH • alkalmazott koaguláns • koaguláns dózis • egyéb anionok (pl. foszfát)

  23. pH-nak jelentős hatása van az As eltávolításra pH hatása Eltávolított As (%) FeCl3, ~ 200 µg/L kezdeti As(V) koncentráció 0,017 mmol Fe3+/L Al2(SO4)3, ~ 300 µg/L kezdeti As(V) koncentráció 0,131 mmol Fe3+/L Bopac, ~ 300 µg/L kezdeti As(V) koncentráció 0,136 mmol Fe3+/L Arzenát eltávolítása a pH függvényében (budapesti csapvízből készített modell oldat, FeCl3, Al2(SO4)3és Bopac koagulánsok)

  24. pH hatása Arzenát eltávolítása a pH függvényében (budapesti csapvízből készített modell oldat, FeCl3 koaguláns, 206 μg/L kezdeti As koncentráció, 0,012 mg Fe3+/L koaguláns dózis) Eltávolítási hatásfok (%) pH

  25. pH hatása A koaguláns dózis növelésével a pH hatása csökken  a magyarországi vizek esetén általában a pH szabályozás nem gazdaságos megoldás a nagy pufferkapacitás miatt. Helyette a koaguláns dózis növelése a megoldás a magasabb pH-val rendelkező nyersvizek esetén. Oldott As (μg/L) pH hatása az arzéneltávolításra alumínium-szulfát koagulálószer alkalmazása esetén (előoxidáció 1,35 mgCl2/L hypóval, 70 μg/L kezdeti arzénkoncentráció)

  26. Az eltávolítás hatékonyságát befolyásoló tényezők • arzén oxidációs száma • pH • alkalmazott koaguláns • koaguláns dózis • egyéb anionok (pl. foszfát)

  27. Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl3) Az oldatban maradó egyensúlyi arzén-koncentráció (M) Forrás: Edwards (1994) A vas, illetve alumínium-koaguláns hatékonysága közel azonos

  28. Az alkalmazott koaguláns típusa Ezen eredmények azt mutatják, hogy a vas-klorid lényegesen hatékonyabb koagulálószer mint az alumínium-szulfát As(V) eltávolítása FeCl3, Al2(SO4)3 és Bopac koagulánsokkal ~ 200 µg/L kezdeti arzénkoncentrációról (budapesti csapvízből készített modell oldat)

  29. Az eltávolítás hatékonyságát befolyásoló tényezők • arzén oxidációs száma • pH • alkalmazott koaguláns • koaguláns dózis • egyéb anionok (pl. foszfát)

  30. Koaguláns dózis: A 10 μg/L-es koncentráció eléréséhez 40-szeres Fe/As arány szükséges (mg/L értékeket figyelembe véve) (Ráczné és Degré, 1998; kísérletek Gyöngyfán) EZZEL SZEMBEN: a 10 µg/L-es arzénkoncentráció eléréséhez szükséges koaguláns dózist alapvetően a nyersvíz minősége határozza meg!!!

  31. Szervesanyag tartalom hatása az arzéneltávolításra Arzenát eltávolítása vas-klorid koagulálószerrel csepeli nyersvízből (KOI = 1 mg/L) és hortobágy-szásztelki nyersvízből (KOI = 12,7 mg/L) készített modell oldatokból (arzén koncentráció ~ 200 µg/L)

  32. Szervesanyag tartalom hatása az arzéneltávolításra Arzenát eltávolítása alumínium-szulfát koagulálószerrel csepeli nyersvízből (KOI = 1 mg/L) és hortobágy-szásztelki nyersvízből (KOI = 13,7 mg/L) készített modell oldatokból (arzén koncentráció ~ 220 µg/L)

  33. Szervesanyag tartalom hatása az arzéneltávolításra A szükséges fém/arzén mólarány 10 µg/L-es arzénkoncentráció eléréséhez (~ 220 µg/L kezdeti arzén koncentráció esetén) alacsony (KOI = ~ 1 mg/L) és magas (KOI ~ 13 mg/L) szervesanyag tartalmú vizek esetén

  34. Az eltávolítás hatékonyságát befolyásoló tényezők • arzén oxidációs száma • pH • alkalmazott koaguláns • koaguláns dózis • egyéb anionok (pl. foszfát)

  35. Foszfát koncentráció hatása A foszfát ionok szintén csökkentik az arzéneltávolításra rendelkezésre álló koaguláns mennyiségét Különbőző kezdeti foszfátkoncentrációk (0,08 – 0,6 mg PO4-P/L) Azonos kezdeti arzénkoncentrációk (58 μg/L) Megegyező koaguláns dózisok (vas-klorid: 1,46 mg Fe3+/L)

  36. Foszfát koncentráció hatása Három különböző kezdeti foszfátkoncentráció (0,38; 0,27; 0,17 mg PO4-P/L) Azonos kezdeti arzénkoncentrációk (58 μg/L) Növekvő koaguláns dózisok (vas-klorid: 0 – 5,7 mg Fe3+/L)

  37. Következtetések az adagolandó koaguláns mennyiségére vonatkozóan A nyersvíz bizonyos paraméterei, úgymint: • szervesanyag tartalom • foszfát tartalom • szilikát koncentráció rendkívüli mértékben befolyásolják az adagolandó vas, illetve alumínium só mennyiségét Az arzén koncentráció mértéke az egyéb – vízben jelen lévő – anyagokhoz képest csekély, így az adagolandó koagulálószer mennyiségét alapvetően nem a víz arzéntartalma, hanem a víz egyéb paraméterei határozzák meg Előkísérletek fontossága a szükséges fémsó : arzén arány meghatározására minden egyes vízbázis esetén

  38. Technológiai sorok kialakítása

  39. VITUKI – VÍZGÉPTERV által kidolgozott technológia (Kiss & Kelemen, 1985) flokk. Cl2 Fe(III)- Cl2 gázmentesítés Up-flow rendszerű szűrő mélységi szűrés

  40. Vízlágyítás Ca(OH)2 adagolásával 2HCO3- + Ca(OH)2 Ca2+ + 2CO32- + 2H2O 2Ca2+ + 2CO32- 2CaCO3 Mg2+ + Ca(OH)2 Mg(OH)2 + Ca2+

  41. Vízlágyítás Na2CO3 adagolásával 2Ca2+ + Na2CO3 CaCO3+ Na+

  42. Az arzén eltávolítása meszes vízlágyítás során: Adszorpció a keletkezett csapadék felületén Koprecipitáció: Mg(OH)2 - ba történő beépülés

  43. vízlágyítás Na2CO3 vagy Ca(OH)2 Cl2 Fe(III)- Cl2 gázmentesítés

  44. Cl2 Vízlágyítás és pH szabályozás Ca(OH)2 Cl2 Fe(III)- KMnO4 gázmentesítés bedolgozott szűrőréteg (mangántalanítás)

  45. Iszapkezelés lépései (Szeghalmi vízmű): Ülepítő medence az ülepítés polielektrolit adagolásával történhet, amely az ülepedést gyorsítja Iszap átemelése a kondicionáló tartályba zeolit por adagolásával egyidejűleg Gépi víztelenítés (szűrőprés) A besűrített anyag konténerbe ürítése iszapkihordó csigával II. osztályú veszélyes hulladék; az elhelyezés feltétele min. 40 % szárazanyagtartalom  veszélyes hulladék lerakó

  46. Iszapkezelés lépései (Dél-Bács-Kiskun megyei vízmű): Ülepítő medence (10-15 óra tartózkodási idő) a felső fázis a települési csapadékcsatorna hálózatba kerül vagy visszavezetik a víztisztítási folyamat elejére Az iszap szárazanyag tartalma ülepítés után: 4-5 % Kaviccsal töltött (1-2 mm átmérőjű) drénezett szikkasztóágy tartózkodási idő: néhány nap Szikkasztás után a szárazanyag tartalom: 20 % Az iszapelhelyezés történhet betonba bedolgozással (?) vagy az aszódi veszélyes hulladék lerakóban

  47. Alkalmazott technológia Arzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárás speciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiák nyomás hatására történő szilárd/folyadék fázisszétválasztás (előtte koaguláció) vagy: oldott As eltávolítása (RO, nanoszűrés)

More Related