1 / 20

Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux

Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux. Rezo Shanidze 17/06/2004 Seminar zu aktuellen Fragen der Astroteilchenphysik. Layout. The sources of high energy n: - Bottom-up models: pp( g ) g p + X g mn m g e n m n e

misty
Télécharger la présentation

Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen Fragen der Astroteilchenphysik Reso Shanidze

  2. Layout • The sources of high energy n: - Bottom-up models: pp(g) g p + Xgmnm genm ne - Top-down models: Decays of WIMPs (Dark matter, SUSY, Topolocical defects) • Models and bounds: - Atmospheric n, WB-bound, HE-n from the Sun - Fluxes from AGN, GRB, … • Current experimental limits • Future prospects • Summary Reso Shanidze

  3. The Sources of High Energyn • Weak decays: p, K, …, charm hadrons: p g m nm (99.99 %) Kg m nm (63.4 %) p e n (4.9 %, 38.8%) - Ke3 decay (K, Ko) pmnm (4.9 %, 27.2%) - Km3 decay c gl nl + X , l =e, m ( 10 %) m ge nmne • ct (p,K, Ko)= 7.8 , 3.7 , 15.5 m, L=gct, g=E/m • ct( charm ) ~ 100 mm Reso Shanidze

  4. Neutrino Flux from pp and pg • Learned, Mannheim, Annu.Rev.Nucl.Part.Sci. 50(2000), 679-749 • The volume emissivity of produced p: • Qp(pp) =∫nt c Np (dspp(Ep,E)/dEp)(dN/dE) dE • dspp(EpE) /dEp - diff. Inclusive cross-section • dN/dE = N 0E–sdE - diff. energy spectra of p(CR) • Qp(pp)(E) – practically same energy spectra • Qn(pp) ~ 1Qp(pp) (4En) ~ En-s • dFn/dEn= ∫Q n drover spatial extent of the source Reso Shanidze

  5. Atmospheric n flux • CR spectra: dN/dE = a E-a • a=2.7 (knee ~1015-1016eV) • Hydrogen(0,9) He(0.08), … • p(He) + A g p,(K) +X • r = r0exp(-h/h0) , h0=8.4km • Earth atmosphere: 1030 g/cm-2 • LpA(LKA)=116 (138) gm/cm-2 • Int./decay(GeV): 115(850) • change of a: 2.7 g 3.7 • Secant theta effect Reso Shanidze

  6. Atmospheric n/m flux • CR interaction and propagation: • MC codes: AIRES, COSMOS, MOCCA, HEMAS, CORSIKA • CORSICA physics models: VENUS, QGSJET, DPMJET, SYBILL, HDPM. • Experimental Data: - Underground experiments: MACRO, Frejus, L3C, … - NT data: Baikal, AMANDA Reso Shanidze

  7. E.Waxman,J.Bahcall PRD, v59(1998), 023003 Based on observations of Fly‘s Eye and AGASA Cosmological origin of CR above 1019 GeV (E.Waxman, astro-ph/9508037) Cosmological distribution of CR sources: dN/dE ~ E-a, a=2 Energy production rate ~ 5x10 44 erg Mpc-3yr -1 E2Fn< 2 x 10-8 GeV/cm2 s sr Waxman-Bahcal Bound:High energy n from astrophysical sources Reso Shanidze

  8. Cosmogenic (GZK) n Flux • Photopion production by UHECR (E>1019 GeV) : • g + p g D g N p ( np :2/3 ) • CMB : 2.7K , ~400 g /cm3, E ~ meV. • IR: 1-2 g cm3, E ~ eV. (T.Stanev, astro-ph/0404535) Reso Shanidze

  9. High Energy n from the SunSun as a standard n - candle ? • G. Ingelman, M. Thunman Phys. Rev. D 54(1996), 4385 • Calculations with LUND MC: PYTHIA(v5.7) /JETSET(7.4) CR flux: (aE-a), interaction With the Sun atmosphere • Rate of nm events integrated over the Sun solid angle. for NT (En > 100 GeV): 1 event /yr ~6x104m2 Reso Shanidze

  10. High Energy n Detectors Reso Shanidze

  11. NT-200 140 m The Baikal NT • First n telescope • 1.1 km depth • NT-36, 96, 192 Reso Shanidze

  12. Results from BAIKAL • 34 events of upward m • astro-ph/0404096 • Search for bright cascades • E-2, ne:nm:nt=1:1:1 • 90% C.L. limit FnE2: 1.3x10-6 cm-2s-1sr-1GeV Reso Shanidze

  13. AMANDA n Detector AntarcticMuonAndNeutrinoDetectorArray AMANDA (ice): 1150-2350m B10 (97-99): 10 strings, 302 OM II (2000): 19 strings 677 OM Reso Shanidze

  14. AMANDA Results( nm flux) • AMANDA B10: 1977 • m -measurement: • Coverage - 2p • ang. ~ 2o -2.5o • logE ~ 0.3-0.4 • 6 < E < 1000 TeV • PRL 90(2003) 2151101-1 • E-2, ne:nm:nt=1:1:1 • E2F(E) < 8.4x10-7GeV /cm2 s sr Reso Shanidze

  15. AMANDA Results(cascades) • cascades: • Coverage - 4p • ang. ~ 30o -40o • logE ~ 0.1-0.2 • Astro-ph/0405218 • 197 d, MC: 920 d • 50 TeV<E<5 PeV • E-2, ne:nm:nt=1:1:1 • E2F(E) < 8.6x10-7GeV /cm2 s sr Reso Shanidze

  16. Acoustic Detection of UHE n • Astro-ph/0406105 • SAUND detector: ~ 250 km2 (US Navy array) - only 7 used. • ~1600 m undersea • 147 days of running (2002) • Calibration, analysis -Energy, position - Rates, reconstraction Reso Shanidze

  17. IceTop AMANDA South Pole 1400 m 2400 m IceCube - 80 Strings - 4800 PMT • Instrumented volume: 1 km3 • Installation: 2004-2010 ~ 80.000 atm. per year Reso Shanidze

  18. DUMAND FREJUS  bound MACRO Muons in Amanda-B10 (1997) WB bound Expectation Amanda-II, 3 years Expectation IceCube, 3 years Search for diffuse excess of extra-terrestrial high energy muon neutrinos C.Spiering, VLVNT Workshop log E /GeV

  19. RICE AGASA Amanda, Baikal 2002 Anita 2004 AUGER nt AABN 2007 EUSO 2012 Auger Salsa km3 GLUE Reso Shanidze

  20. Sumary and Outlook • High energy n astronomy: Data from Baika(lake), AMANDA(ice) • New undersea NT: ANTARES, NESTOR • Sensitivity to the cosmic n diffuse flux NT on km3 scale: IceCube, KM3NeT • Acoustic and other technique (RICE, ANITA, EUSO, GLUE) for UHE n. Reso Shanidze

More Related