1 / 33

第二章 定常不可压势流的数值计算 Chapter 2 Numerical computation of Steady Incompressible Potential Flow

第二章 定常不可压势流的数值计算 Chapter 2 Numerical computation of Steady Incompressible Potential Flow. 2.1 定常不可压势流的基本方程 The Basic Equation of Incompressible Potential Flow 当流场无旋时,存在速度势函数 , 应满足 Laplace 方程

Télécharger la présentation

第二章 定常不可压势流的数值计算 Chapter 2 Numerical computation of Steady Incompressible Potential Flow

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第二章 定常不可压势流的数值计算Chapter 2 Numerical computation of Steady Incompressible Potential Flow 2.1 定常不可压势流的基本方程 The Basic Equation of Incompressible Potential Flow • 当流场无旋时,存在速度势函数 , 应满足Laplace方程 When the flow is irrotational ,there must be exists the potential function ,and it is satisfies the Laplace Equation . • 在直角坐标系中可写成 In Cartesian coordinate ,the Laplace Equation is (2D) (3D)

  2. 在柱坐标系中 In cylindrical coordinate ,it is • 计算出 ,即可得到 和 After gained ,the velocity and pressure can be obtained as follow

  3. 若流场中有源或者汇,则 If there exist a source or sink in the flow ,then The equation becomes

  4. 假设流场中源的分布(平面问题), Assume: the distribution of the source and sink is following the field within a cycle regime 则PDE为 Therefore the PDE is 2.2 由分布的源,汇引起的径向流动计算 The computation of the flow introduced by the distributed source and sink .

  5. 无量纲化参数 choose the dimensionless parameters as follows, 无量纲方程 thedimensionless equation becomes

  6. 流场区域 Flow field regained is limited as • 此方程为二阶线性齐次方程,存在精确解 This eq is a two order linear equation ,it has a accurate solution • 对于 • 则,精确解为 The accurate solution is

  7. 对应的方程阶为 The corresponding PDE is • 边界条件 R=1 时 B.C R=4 时 • 速度解 The solution of velocity

  8. 下面讨论其数值解The numerical value solution will be discussed as following 一般线性二项齐次常微分方程边值问题: • In general case , the 2D liner PDE can be written in to express ,using centeral difference scheme, which has 2 order accuracy.

  9. x • 将方程中 和 用中心差分格式表示(具有二阶精度) • 微分方程可化为差分方程: • Then ,the PDE can be written into FDE form.

  10. That is 其中: where

  11. 对于n各节点(i=1,2,3,……n),上式构成一个线性方程组,可写为一个三对角矩阵对于n各节点(i=1,2,3,……n),上式构成一个线性方程组,可写为一个三对角矩阵 • For node number n , the series equations can be written as a linear equations, also can be express as a triangle array as following.

  12. 此线性方程组可用追赶法求解,也可用高斯法求解,还可以采用迭代法求解此线性方程组可用追赶法求解,也可用高斯法求解,还可以采用迭代法求解 • This linear equations can be solved using gauss method ,or Saidel iterative method • 对于源汇问题: • For above distributed source problem • 可以求出:The potential function can be solved ,and the velocity can be calculated . • (i=1,2,3,……n) • 作业:用书上的程序计算出数值解,并与精确解进行比较。 • Question :using the fortran program provided in the text book (in p13) to get the numerical solution ,and compare the results with the accuracy solution.

  13. 用点源(汇)分布在对称轴上来模拟流体绕过任意旋转体用点源(汇)分布在对称轴上来模拟流体绕过任意旋转体 Source and sink are used to simulate the flow past a rotational body. 轴对称不可压流动流函数方程为: The steam function equation for axis-symmetric flow is : 该方程是线性方程,其通解为: It is a linear PDE , and the general solution is 2.3旋转体绕流的数值解法(源、汇、偶极子)Numerical method for a Rotational Body Flow(source , sink and doublets)

  14. 上式代表点源 It denotes a flow introduced by a source. 可以用基本解叠加构成绕旋转体的解。 采用在Z轴上分布的源 ,使这些点源在物体表面各点的扰动速度与自由来流叠加后在 法线方向都为0. To distribute source and sink on the axis of the body and let the normal component of velocity on body surface zero. 各点处线源的流函数为 The stream function of the line source element on

  15. 其中 为源的线密度线元 和 上的源流函数 : stream function on linear source from to r P(zi,ri) d(zj, rj) d(zj+1,rj+1) P(zj, rj) Z

  16. 把AB分成n段,其总的流函数为: divide AB into n segments and the stream function is : 在旋转体子午线上任意一点 上的流函数为: for a point on the surface the stream function is :

  17. 是一条流线上的点,通常称为零流线Since is on the surface ,it is defined as zero streamline 令 , 表面为零流线

  18. 则then 上式是关于 的线性方程组,同时,要使 的总和为0,即which denotes a linear equations about ,and the total net volume flax inside the body must be zero, so: 总源强为零

  19. 在物面上其n-1个点 ,构成n-1组线性方程,再加上面的方程即可构成线性方程: n-1 points on surface and above equation construct a closed linear equations as following:

  20. 求解此方程可得到 ,从而得到流线数解 和 solving this equation ,the source can be got .

  21. 利用伯努利方程可得: Using Bernoulli equation , then

  22. §2.4 椭圆型偏微分方程的数值解 Numerical solution of the ellipse PPE 二阶偏微分方程的一般形式 General form of 2nd order PPE af xx+bf xy +cfyy=F(x,y,z,f,fx,fy) ●具有三种可能的类型 It can be three following types (1)椭圆型(方程),当 b2-4ac<0 Ellipse, when (2)抛物型(方程),当 b2-4ac=0 Parabola ,when (3)双曲型(方程),当 b2-4ac>0 Hyperbola when

  23. 以泊松方程为例说明椭圆型方程的数值解法 To explain the numerical solution using a Possion equation f x x + f y y=q (x , y) 2D Possion equation b2-4ac=0-4*1*1<0 • 用i代表x方向节点序号 • i denote the sequence where in x direction • j代表y方向节点序号 • j denote the sequence where in y direction • 左边界(1, j) • left • 右边界(m, j) • Right • 内点 (i, j) • inner (1<i<m) • 上边界点(i, n)(i=1,2…,m)

  24. Up boundary • 下边界点(i, 1)(i=1,2…,m) • Low boundary • 内点 (i, j)(i=2,3…,m-1,j=2,3, …,n-1) • Inner point • 将Possion 方程写成差分方程 • To write the Possion equation into FDE 若△x= △y=h,则上式可解为 Give △x= △y=h,then

  25. Laplace调和函数的平均值定理 • Average of the Laplace function • 此式在给定边界值时构成一个(m-2)*(n-2)阶的代数方程组。可以用多种方法。 • When the boundary value is known, it constructs a (m-2)*(n-2)order linear equations • 直接法direct method • 矩阵求逆 Array • LU分解 decompose • 迭代法 iterative method

  26. 前三种方法要求的计算内存和计算时间长 The first three methods ned more memory and CPU time • 迭代法:对计算机资源要求低(逐点迭代) Iteration method requires less resource of computer • 每一点都同周围四点的最新值平均和当前点的原项值求解 • Value on every points is the average of surroundings

  27. 可以证明,当 n→ 时 , 将接近有限差分方程的解 • It is proved that when n→ , will approach the DE solution.

  28. 当节点数比较多时,迭代收敛很慢 • When the number of node is large convergence will be slowly • 超松弛迭代: • Super-Relaxation iteration 把迭代计算结果作为中间值, • The iterativation solution is give as median

  29. 将 与 进行加权平均得到 • The wrighted average of the and • 或写成:or

  30. 把两次迭代得到的差别(利用松弛因子对修正量进行放大或缩小)把两次迭代得到的差别(利用松弛因子对修正量进行放大或缩小) • To apply the difference between the cuidial and calculated value • 当 时为弱松弛 • When it is so called weak relaxation • 当 时为超松弛 • When it is so called weak relaxation • 最佳超松弛因子 • Optical best value of the Relaxation factor

  31. 例:不可压平面流通过二维容器(如图) • Example 2D incompressible flow in a conduct • 差分方程的迭代公式 • iteration of the equation formula • 边界条件: • BC • 容器的进口的体积流量为AB线上的任意一点与其表面上点的连线上 • 的体积流量为1 y n=17 0 A B m x 在 线上 on 在其余边界上 on other B

  32. 小 结 • 本章内容(contents) • 定常不可压势流差分方法(FDM of elliptic PDE for steady incompressible potential flow) • 定常不可压势流源汇法(Source and sink method for axis-symmetric incompressible flow) • 椭圆型偏微分方程数值方法(Numerical method for elliptic PDEs) • 本章重点(focus) • 椭圆型偏微分方程数值方法(Numerical method for elliptic DEs)

More Related