1 / 25

The case for High energy neutrino astronomy

The case for High energy neutrino astronomy. Eli Waxman Weizmann Institute, ISRAEL. High energy n ’ s: A new window. MeV n detectors: Solar & SN1987A n ’ s Stellar physics (Sun ’ s core, SNe core collapse) n physics >0.1 TeV n detectors: Extend n horizon to extra-Galactic scale

nani
Télécharger la présentation

The case for High energy neutrino astronomy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The case forHigh energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL

  2. High energy n’s: A new window MeV n detectors: • Solar & SN1987A n’s • Stellar physics (Sun’s core, SNe core collapse) • n physics >0.1 TeV n detectors: • Extendn horizon to extra-Galactic scale MeV n detectors limited to local (Galactic) sources [10kt @ 1MeV1Gton @ TeV , sTeV/sMeV~106] • Study “Cosmic accelerators” [pg, pp  p’sn’s] • n physics

  3. v The 1020eV challenge R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Waxman 95, 04, Norman et al. 95] • AGN (Steady): G~ 101 L>1014 LSun few brightest • ~1/100 Gpc3 d >> 100Mpc  ?? AGN flares • GRB (transient): G~ 102.5 L>1017 LSunLg~ 1018LSun [Blandford 76; Lovelace 76] [Farrar & Gruzinov 08] [Waxman 95, Vietri 95, Milgrom & Usov 95]

  4. Source physics • GRB: 1020LSun, MBH~1Msun, M~1Msun/s, G~102.5 • AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, G~101 • MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, G~100.5 Jet acceleration Energy extraction Particle acceleration Jet content (kinetic/Poynting) Radiation mechanisms

  5. Clues: CR phenomenology Galactic heavy (“hypernovae”  Z~10 to 1019eV) log [dJ/dE] Flattening, Near isotropy, Heavy light (?) E-2.7 Protons E-3 X-Galactic, ?Light Heavy Nuclei 1 1010 106 Cosmic-ray E [GeV] [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

  6. Constraints: Flux & Spectrum Particle acc.; SFR , AGN, GRB [Waxman 1995; Bahcall & Waxman 03] [Berezinsky et al. 08] DEsys/E~20% [Kashti & Waxman 08]

  7. Clues: Anisotropy Biased (rsource~rgal for rgal>rgal ) CR intensity map (rsource~rgal) Galaxy density integrated to 75Mpc • Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase  >99% CL, but not 99.9% CL • Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL  low-luminosity AGN? Simply trace LSS! [Kashti & Waxman 08] [Waxman, Fisher & Piran 1997] [Auger collaboration 07] [George et al. 08]

  8. >1019eV cosmic rays: Clue summary • Spectrum (+Xmax)  likely X-Galactic protons • Anisotropy + Spectrum  likely “Conventional” sources • L constraint  likely Transient sources • Ep2dN/dEp~ 0.7x1044 erg/Mpc3 yr • What next for Auger? Identify (narrow spectrum) point source(s)?

  9. HE n Astronomy • p + g N +p p0 2g ; p+  e+ + ne + nm + nm  Identify UHECR sources Study BH accretion/acceleration physics • E2dn/dE=1044erg/Mpc3yr + tgp<1: • If X-G p’s:  Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01]

  10. AGN n models?? BBR05

  11. Experiments • Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km3 IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km3s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km3 Nestor: (?)  0.1 km3 km3Net: R&D  1 km3 • UHE: Radio Air shower • Aura, Ariana (in Ice) Auger (nt) • ANITA (Balloon) EUSO (?) • LOFAR

  12. Generic GRB fireball n’s • If: Baryonic jet, internal shocks (Weak dependence on model parameters) • Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

  13. The current limit [Achterberg et al. 07 (The IceCube collaboration)]

  14. n- physics & astro-physics [Waxman & Bahcall 97] • p decay  ne:nm:nt = 1:2:0 (Osc.) ne:nm:nt = 1:1:1 t appearance experiment • GRBs: n-g timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106 • EM energy loss of m’s (and p’s) • ne:nm:nt = 1:1:1 (E>E0) 1:2:2 • GRBs: E0~1015eV • Combining E<E0, E>E0 flavor measurements may constrain CPV [SinQ13 Cosd] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Rachen & Meszaros 98; Kashti & Waxman 05] [Blum, Nir & Waxman 05]

  15. Outlook • Particle+Astro-phys. Open Q’s - >1011GeV particles: primaries, f(z),origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ…) Energy extraction from BH accretion Relativistic plasma physics - “Conventional” astrophysics (starburst ISM) - nm ntt appearance gn Timing  LI to 1:1016; WEP to 1:106 Flavor ratios  CPV • New HE g, CR and n detectors >103 km2 hybrid >1019eV CR detectors ~1 km3 (=1Gton) 1-1000TeV n detectors >>1 km3[radio,…] >>1000TeV n detectors 10MeV—10GeV g-ray satellite (AGILE, GLAST) >0.1TeV (ground based) g-ray telescopes (Milagro, HESS, MAGIC, VERITAS) Identified point sources Diffuse

  16. Composition clues HiRes 2005

  17. Electrons MeV g’s: tgg<1: e- (g) spectrum: e- (g)energy production Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: GRB proton/electron acceleration [Waxman 95, 04]

  18. The GRB “GZK sphere” g p • LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV eB=(B2/8p)/nT~0.01 (B~0.01mG), lB~10kpc • Prediction: D lB [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

  19. GRB Model Predictions [Miralda-Escude & Waxman 96]

  20. & IceCube AMANDA

  21. The Mediterranean effort • ANTARES (NESTOR, NEMO) KM3NeT

  22. M82 M81 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler

  23. A lower bound: Star bursts • Star burst galaxies: - Star Formation Rate ~103Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 mG >> 1mG “normal” • Most stars formed in (z>1.5) star bursts • High density + B: CR e-’s lose all energy to synchrotron radiation CR p’s lose all energy to p production [Quataert et al. 06] [Loeb & Waxman 06]

  24. Synchrotron radio Fn calibration [Loeb & Waxman 06]

More Related