1 / 45

3. Genome Annotation: Gene Prediction

3. Genome Annotation: Gene Prediction. Gene Prediction: Computational Challenge. Gene : A sequence of nucleotides coding for protein Gene Prediction Problem : Determine the beginning and end positions of genes in a genome. Gene Prediction: Computational Challenge.

neila
Télécharger la présentation

3. Genome Annotation: Gene Prediction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3. Genome Annotation:Gene Prediction

  2. Gene Prediction: Computational Challenge • Gene: A sequence of nucleotides coding for protein • Gene Prediction Problem: Determine the beginning and end positions of genes in a genome

  3. Gene Prediction: Computational Challenge aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

  4. Gene Prediction: Computational Challenge aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

  5. Gene Prediction: Computational Challenge aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg Gene!

  6. DNA transcription RNA translation Protein Central Dogma: DNA -> RNA -> Protein CCTGAGCCAACTATTGATGAA CCUGAGCCAACUAUUGAUGAA PEPTIDE

  7. Prokaryotic and eukaryotic organisms

  8. Translating Nucleotides into Amino Acids • Codon: 3 consecutive nucleotides • 4 3 = 64 possible codons • Genetic code is degenerative and redundant • Includes start and stop codons • An amino acid may be coded by more than one codon

  9. Codons • In 1961 Sydney Brenner and Francis Crick discovered frameshift mutations • Systematically deleted nucleotides from DNA • Single and double deletions dramatically altered protein product • Effects of triple deletions were minor • Conclusion: every triplet of nucleotides, each codon, codes for exactly one amino acid in a protein

  10. Genetic Code and Stop Codons UAA, UAG and UGA correspond to 3 Stop codons that (together with Start codon ATG) delineate Open Reading Frames

  11. Six Frames in a DNA Sequence • stop codons – TAA, TAG, TGA • start codons - ATG CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG

  12. Open Reading Frames (ORFs) • Detect potential coding regions by looking at ORFs • A genome of length n is comprised of (n/3) codons • Stop codons break genome into segments between consecutive Stop codons • The subsegments of these that start from the Start codon (ATG) are ORFs • ORFs in different frames may overlap ATG TGA Genomic Sequence Open reading frame

  13. Long vs.Short ORFs • Long open reading frames may be a gene • At random, we should expect one stop codon every (64/3) ~= 21 codons • However, genes are usually much longer than this • A basic approach is to scan for ORFs whose length exceeds certain threshold • This is naïve because some genes (e.g. some neural and immune system genes) are relatively short

  14. Testing ORFs: Codon Usage • Create a 64-element hash table and count the frequencies of codons in an ORF • Amino acids typically have more than one codon, but in nature certain codons are more in use • Uneven use of the codons may characterize a real gene • This compensate for pitfalls of the ORF length test

  15. Codon Usage in Human Genome

  16. Codon Usage in Mouse Genome AA codon /1000 frac Ser TCG 4.31 0.05 Ser TCA 11.44 0.14 Ser TCT 15.70 0.19 Ser TCC 17.92 0.22 Ser AGT 12.25 0.15 Ser AGC 19.54 0.24 Pro CCG 6.33 0.11 Pro CCA 17.10 0.28 Pro CCT 18.31 0.30 Pro CCC 18.42 0.31 AA codon /1000 frac Leu CTG 39.95 0.40 Leu CTA 7.89 0.08 Leu CTT 12.97 0.13 Leu CTC 20.04 0.20 Ala GCG 6.72 0.10 Ala GCA 15.80 0.23 Ala GCT 20.12 0.29 Ala GCC 26.51 0.38 Gln CAG 34.18 0.75 Gln CAA 11.51 0.25

  17. Transcription in prokaryotes Transcribed region start codon stop codon 3’ Coding region 5’ Untranslated regions Promoter Transcription stop side Transcription start side upstream downstream -k denotes kth base before transcription, +k denotes kth transcribed base

  18. Microbial gene finding • Microbial genome tends to be gene rich (80%-90% of the sequence is coding) • The most reliable method – homology searches (e.g. using BLAST and/or FASTA) • Major problem – finding genes without known homologue.

  19. Open Reading Frame Open Reading Frame (ORF) is a sequence of codons which starts with start codon, ends with an end codon and has no end codons in-between. Searching for ORFs – consider all 6 possible reading frames: 3 forward and 3 reverse • Is the ORF a coding sequence? • Must be long enough (roughly 300 bp or more) • Should have average amino-acid composition specific for a give organism. • Should have codon use specific for the given organism.

  20. Recognition of gene related signals • Promoter: bacteria TATAAT – Pribnow box at about –10; • Terminator: Rho-independent (intrinsic) transcription termination – G-C reach inverted repeat. • Other signal recognition –e.g binding motifs

  21. Input sequence frequency in coding region frequency in non-coding region Compare Coding region or non-coding region Codon frequency

  22. Example Assume: bases making codon are independent P(x|in coding) P(x|random) = P(Ai at ith position) P(Ai in the sequence) P i Score of AAAGAT: .28*.32*.33*.21*.26*.14 .31*.31*.31*.31*.31*.19

  23. Using codon frequency to find correct reading frame Consider sequence x1 x2 x3 x4 x5 x6 x7 x8 x9…. where xi is a nucleotide let p1 = p x1 x2 x3 p x3 x4 x5…. p2 = p x2 x3 x4 p x5 x6 x7…. p3 = p x3 x4 x5 p x6 x7 x8…. then probability that ith reading frame is the coding frame is: pi p1 + p2 + p3 • Algorithm: • slide a window along the sequence and • compute Pi • Plot the results Pi =

  24. First order Markov chain: formal def. M = (Q, p, P) Q – finite set of states, say |Q|= n a – n x n transition probability matrix a(i,j)= P[q t+1=j|g t=i] • – n-vector, starting probability vector p(i) = Pr[q 0=i] For any row of a the sum of entries = 1 Sp (i) = 1 Comment: Frequently extra start and end states are added and vector p is not needed.

  25. Hidden Markov Model Hidden Markov Model is a Markov model in which one does not observe a sequence of states but results of a function prescribed on states – in our case this is emission of a symbol (amino acid or a nucleotide). States are hidden to the observers.

  26. Introducing emission probabilities • Assume that at each state a Markov process emits (with some distribution) a symbol from alphabet S. • Rather than observing a sequence of states we observe a sequence of emitted symbols. Example: S ={A,C,T,G}. Generate a sequence where A,C,T,G have frequency p(A) =.33, p(G)=.2, p(C)=.2, p(T) = .27 respectively 1.0 A .33 T .27 C .2 G .2 emission probabilities one state

  27. HMM – formal definition HMM is a Markov process that at each time step generates a symbol from some alphabet, S, according to emission probability that depends on state. M = (Q, S, p, a,e) Q – finite set of states, say n states ={q0,q1,…} a – n x n transition probability matrix: a(i,j) = Pr[q t+1=j|g t=i] • – n-vector, start probability vector: p (i) = Pr[q 0=i] S = {s1, …,sk}-alphabet e(i,j) = P[ot=sj|qt = i]; ot –tth element of generated sequences = probability of generating oj in state qi (S=o0,…oT the output sequence)

  28. Algorithmic problems related to HMM • Given HMM M and a sequence S compute Pr(S|M) – probability of generating S by M. • Given HMM M and a sequence S compute most likely sequence of states generating S. • What is the most likely state at position i. • Given a representative sample (training set) of a sequence property construct HMM that best models this property.

  29. Probability of generating a sequence S by HMM Recall: probability of a sequence of states S=q0,…,qn in Markov chain : P(S|M) =a(q0,q1) a(q1 ,q2) a(q2 ,q3) … a(qn-1 ,qn) Now: Our sequence S = o0,…,oT is a word over S and there can be many paths leading to the generation of this sequence. Need to find all these paths and sum the probabilities.

  30. Formal definition of P(S|M) M = (Q, S, a,e); (p is dropped: q0 is the starting state) S = o0…on P[S|M] = SpQn+1P[p|M]P[S|p,M] (sum over all possible paths p=q0,…qn of product: probability of the path times the probability of generating given sequence assuming given path.) P[p|M] =a(q0,q1) a(q1 ,q2) a(q2 ,q3) … a(qn-1 ,qn) P[S|p,M] = e(q0,s1) e(q1,s2) e(q2 ,s3) … e(qn ,sn) Computing LS(M) from the definition (enumerating all sequences p) would take exponential time!

  31. Sample sequence: S=ATCACAT Assume: 0 start state 4 – end state Example .4 3 A .3 T .3 C .3 G .1 .6 .5 1 2 4 0 A .5 T .5 A .5 T .25 C .25 A .25 T .25 C .25 G .25 A .3 T .3 C .1 G .3 .6 1.0 .5 .4 Two possible paths: p1=0,1,3,3,3,3,4 and p2=0,1,2,2,2,4 P(p1|M) = 1*.5*.4*.4*.4*.6=.0192; P(S|p1) = .5*.25*.3*.3*.3*.3*.5 =.00050625; P(p1|M) * P(S|p1) = .00000972 P(p2|M) =.0192; P(S|p2) =1*.5*.25*.1*.3*.1*.3*.5 =.00005625; P(p2|M) * P(S|p2) = .000000198 P(S|M) =.00000972 + 000000198 = 0.000009828 Observe how small are the numbers – we need to switch from probabilities to log.

  32. Most likely path • Most likely path for sequence S is a path p in M that maximizes P(S|p). • Why it may be interesting to know most likely path: • Frequently HMM are designed in such a way that one can assign biological relevance to a state: e.g. position in protein sequence, beginning of coding region, beginning/end of an intron.

  33. Example: GpC island Mode for GpC island Model for general sequence Transitions between any pair of states ATCAGTGCGCAAATAC If this is most likely path we have estimated position if GpC island

  34. Simple HMM for prokaryotic genes p 1 1 Position 1 Position 2 Position 3 1-q 1-p Non-Coding Region q

  35. HMM-based Gene finding programs for microbial genes • GenMark- [Borodovsky, McInnich – 1993, Comp. Chem., 17, 123-133] 5th order HMM • GLIMMER[Salzberg, Delcher, Kasif,White 1998, Nucleic Acids Research, Vol 26, 2 55408] – Interpolated Markov Model (IMM)

  36. Eukaryotic gene finding • On average, vertebrate gene is about 30KB long • Coding region takes about 1KB • Exon sizes vary from double digit numbers to kilobases • An average 5’ UTR is about 750 bp • An average 3’UTR is about 450 bp but both can be much longer.

  37. Exons and Introns • In eukaryotes, the gene is a combination of coding segments (exons) that are interrupted by non-coding segments (introns) • This makes computational gene prediction in eukaryotes even more difficult • Prokaryotes don’t have introns - Genes in prokaryotes are continuous

  38. Central Dogma and Splicing intron1 intron2 exon2 exon3 exon1 transcription splicing translation exon = coding intron = non-coding

  39. Gene Structure

  40. Splicing Signals Exons are interspersed with introns and typically flanked by GT and AG

  41. Donor site 5’ 3’ Position % Splice site detection

  42. Consensus splice sites Donor: 7.9 bits Acceptor: 9.4 bits

  43. Promoters are DNA segments upstream of transcripts that initiate transcription Promoter attracts RNA Polymerase to the transcription start site Promoters 5’ 3’ Promoter

  44. Splicing mechanism (http://genes.mit.edu/chris/)

  45. Splicing mechanism • Adenine recognition site marks intron • snRNPs bind around adenine recognition site • The spliceosome thus forms • Spliceosome excises introns in the mRNA

More Related