1 / 20

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics. Rajendra Pokharel 1 , Sean Gavin 1 and George Moschelli 2 1 Wayne State University 2 Frankfurt Institute of Advanced Studies. Winter Workshop on Nuclear Dynamics Feb 3-10 Squaw Valley, CA.

nicki
Télécharger la présentation

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics Rajendra Pokharel1, Sean Gavin1 and George Moschelli2 1 Wayne State University 2 Frankfurt Institute of Advanced Studies Winter Workshop on Nuclear Dynamics Feb 3-10 Squaw Valley, CA

  2. Outlines • Motivation • Hydrodynamics of Fluctuations and Viscosity • Diffusion of pt correlations • Results • Summary WWND 2013 Rajendra Pokharel 2/4/13

  3. Motivation • Modification of transverse momentum fluctuations by viscosity • Transverse momentum fluctuations have been used as an alternative measure of viscosity • Estimate the impact of viscosity on fluctuations using best information on EOS, transport coefficients, and fluctuating hydrodynamics WWND 2013 Rajendra Pokharel 2/4/13

  4. Quantity of interest Our quantity of interest is C, given by Sean Gavin & Mohamed Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302 Experiments measure pt correlations and find C. Theory calculates it from the quantity r. r : two-particle transverse momentum correlation function: WWND 2013 Rajendra Pokharel 2/4/13

  5. Transverse momentum fluctuations Small fluctuation in transverse flow Results in shear viscosity Linearized Navier-Stoke equation for momentum density: Longitudinal modes: Transverse modes: Helmholtz decomposition: viscous diffusion We are interested on transverse modes sound waves (damped by viscosity) WWND 2013 Rajendra Pokharel 2/4/13

  6. Relativistic viscous hydro and diffusion of flow fluctuations Local conservation of energy-momentum ideal dissipative First order (Navier-Stokes) hydro: Linearized Navier-Stokes for transverse component for flow fluctuation Regular diffusion of transverse flow fluctuations. Problem with this regular diffusion equation - violates causality !

  7. Second order hydro and diffusion of two-particle correlations Second order (Israel-Stewart) hydro: A. Muronga, Phys.Rev. C69, 034903 (2004) We ignore bulk viscosity. Linearized Israel-Stewart: Saves causality satisfies the diffusion equation r satisfies satisfies the causal diffusion equation r satisfies    WWND 2013 Rajendra Pokharel 2/4/13

  8. Temperature dependent η/s Diffusion of Δr using Bjorken flow and (τ, η) coordinates Entropy production First order Ideal Second order A. Muronga, Phys.Rev. C69, 034903 (2004) Viscosity T. Hirano and M. Gyulassy, Nucl. Phys. A769, 71(2006), nucl-th/0506049. WWND 2013 Rajendra Pokharel 2/4/13

  9. Temperature dependent η/s Entropy density EOS I Lattice (s95p-v1) EOS II standard Lattice: P. Huovinen and P. Petreczky, Nucl.Phys. A837, 26(2010), 0912.2541 T. Hirano and M. Gyulassy, Nucl. Phys. A769, 71(2006), nucl-th/0506049. Temperature and dependent diffusion coefficient WWND 2013 Rajendra Pokharel 2/4/13

  10. Wave vs diffusion WWND 2013 Rajendra Pokharel 2/4/13

  11. Results Relaxation time: τπ = 5-6,AMY, Phys. Rev. D79, 054011 (2009), 0811.0729 τπ= 6.3, J. Hong, D. Teaney, and P. M. Chesler (2011), 1110.5292 STAR: H. Agakishiev et al, Phys.Lett. B704 (2011) 467 R. Pokharel, S. Gavin, G. Moschelli in preparation WWND 2013 Rajendra Pokharel 2/4/13

  12. Results How about other centralities ? STAR: H. Agakishiev et al, Phys.Lett. B704 (2011) 467 STAR (other centralities): M. Sharma’s presentation, WWND 2011, Winter Park, CO R. Pokharel, S. Gavin, G. Moschelli in preparation • Bumps in a few most central cases both in data and second order diffusion calculations • This occurs at the same centralities in (although the comparison is not great) • We claim that this a second order diffusion effect WWND 2013 Rajendra Pokharel 2/4/13

  13. Results First order vs second order WWND 2013 Rajendra Pokharel 2/4/13

  14. Results Width of correlation Except for the a few most central cases, first order diffusion does not reproduce the data Second order does! Also, very small difference due to EOS I and EOS II. Order of entropy production makes almost no change in the results. NeXSPHeRIO (= NEXUS + SPHERIO) uses ideal hydro for the evolution of initial correlation. It reproduces most qualitative features of correlation (e.g., the “ridge”). However, it does not reproduce the increasing width with centralities. STAR: H. Agakishiev et al, Phys.Lett. B704 (2011) 467 NeXSPheRIO: Sharma et al., Phys.Rev. C84 (2011) 054915 Computation:R. Pokharel, S. Gavin, G. Moschelli in preparation WWND 2013 Rajendra Pokharel 2/4/13

  15. Summary • The observable C has the second order “bump in the hump”. Experimental data shows the effect for the same centralities. • Theory the bumps is clear: pronounced effect of wave part of the causal diffusion equation. • NeXSPheRIO(ideal hydro + correlation) does not produce broadening width, and therefore does not agree with width data. • First order viscous hydro calculations does not reproduce data except for a few most central collisions • Second order viscous hydrodynamic calculation of width fits the data. WWND 2013 Rajendra Pokharel 2/4/13

  16. Thank You ! Contact: rajpol@wayne.edu, rajpol@hotmail.com WWND 2013 Rajendra Pokharel 2/4/13

  17. Backups Constant , first order vs second order WWND 2013 Rajendra Pokharel 2/4/13

  18. Backups WWND 2013 Rajendra Pokharel 2/4/13

  19. Backups STAR: H. Agakishiev et al, Phys.Lett. B704 (2011) 467 WWND 2013 Rajendra Pokharel 2/4/13

  20. Backups M. Sharma WWND 2011 presentation WWND 2013 Rajendra Pokharel 2/4/13

More Related