1 / 48

綠色節能高分子材料

綠色節能高分子材料. 台灣科技大學 高分子工程系 邱 顯 堂 TEL : 0935500726 E-MAIL : hchiu@mail.ntust.edu.tw. Jentech Polymer Laboratory / NTUST. 綠色 ‧ 節能 ‧ 減碳. 水系高分子→非溶劑型→綠色 傳動皮帶高效率化→能源轉換效率→節能→減碳 新能源→風能→葉片→複合材料 新能源→燃料電池→ MEA→ 高分子 高分子材料. Introduction of developing aqueous PU dispersions. Safety.

nishi
Télécharger la présentation

綠色節能高分子材料

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 綠色節能高分子材料 台灣科技大學 高分子工程系 邱 顯 堂 TEL:0935500726 E-MAIL:hchiu@mail.ntust.edu.tw Jentech Polymer Laboratory / NTUST

  2. 綠色‧節能‧減碳 • 水系高分子→非溶劑型→綠色 • 傳動皮帶高效率化→能源轉換效率→節能→減碳 • 新能源→風能→葉片→複合材料 • 新能源→燃料電池→MEA→高分子 高分子材料

  3. Introduction of developing aqueous PU dispersions

  4. Safety Environment Health Flammable liquid Air Pollution Water Pollution Health effect Background Developing aqueous PU dispersions Solvent based polyurethane Water based polyurethane ( Aqueous PU dispersion ) (1)Low V.O.C. content (2) Low risk of fire hazard (3) Reducing worker exposure to solvent vapors

  5. Prepolymer mixing rocess Shear force process Acetone process Melt-dispersion process Ketimin/Ketazineprocess Polyols Polyethers Polyesters Polyethers Disocyanate TDI TDI , IPDI , H12MDI , HDI , m-TMXDI Ketimine / Ketazine Nonionomer Anionomer , Cationomer Ionic center N-methyl pyrrolidone Solvents Toluene Acetone Acetone Temperature ~ 20oC ~ 50oC 20 ~ 80oC 50 ~ 130oC 50 ~ 80oC Chain extension Procedure after dispersion Chain extension Acetone Distill. Acetone Distill. Polycondensation 700 3,000 30 100,000 100 500 30 100,000 30 1,000 Particle size ( nm ) ~ ~ ~ ~ ~ Specific Features of PU Dispersions D. Dieterich

  6. COO-HR3N+ OOCNH + N - A H Techniques of Polyurethane Dispersions D. Dieterich Aqueous PU Ionomer (1) Anionomer (2) Cationomer ( -SO3- Na+ ) Internal stabilization Prepolymer mixing process

  7. Related Articles PU anionomer prepared by prepolymer mixing process NCO / OH Authors Diisocyanate Polyol Ionic center B. K. Kim IPDI Polyester (PEA) DMPA ( 2.5~5.0% ) 1.3 J. H. Kim IPDI Polyester (PHMA) DMPA ( 6.0~12% ) 1.2 IPDI Polyether (PTMG) DMPA (6%) 1.0~2.0 S. W. Kim IPDI H12MDI HDI m-TMXDI Polyether (PTMG) DMPA (5%) 2.0 D. J. Hourston C. Price m-TMXDI Polycaprolactone DMPA (2~8%) 1.7

  8. Related Articles

  9. Related Articles

  10. Tensile strength, Tgs& Solvent resistance Tensile strength Elongation Tgs Solvent resistance H12MDI m-TMXDI IPDI IPDI/HDI Elongation Related Articles

  11. H HOCH H 2 CH OH 2 Crosslinking of PU dispersions • Ambient curing • 1.1 Azilidines1.2 Carbodiimides K. N. Chen L. C. J. Hesselmans 2. High temp. curing 2.1 Fully methylated melamine formaldehyde (HMMM) 2.2 Partially methylated melamine formaldehyde (PMMF) W. J. Blank R. G. Coogan Cytec Inc., USA

  12. Urea Urethane Crosslinking of PU dispersions / HMMM

  13. Crosslinking of PU dispersions / HMMM (120oC) (150oC)

  14. N=C=O • Steric hindrance • Non conjugated N=C=O ● Aliphatic polyisocyanate ●Low isocyanate reactivity ● Low side reaction(Biuret, Allophonate, Isocyanurate) Manufacturing advantages IsocyanateViscosity (cps /100°C) m-TMXDI 2,300 IPDI / H12MDI 100,000 1 Lower water reactivity ( <30oC) 2 Lower Carboxylic acid reactivity ( <100oC) 3Prepolymer viscosity is significantly lower Chemical structure of m-TMXDI α,α,α’,α’-Tetramethyl-m-xylylene diisocyanate Cytec Inc., USA

  15. Diisocyanate Polyol Chain extension Ionic center NCO / OH m-TMXDI Polyether (PTMG) DMPA (3~10%) 1.8 EDA Characterization GPC FTIR 13C-NMR TGA Particle size PMMF (phr) 5 10 20 30 40 Curing behavior Structure-properties RPT TGA FTIR DMA TGA Tensile test * RPT : Rigid-body Pendulum type Physical properties Test instrument Experimental Design and Methods Synthsis of Anionic PU dispersions (prepared by prepolymer mixing process) Crosslinking with PMMF ( Curing condition : 120 & 150oC x 30 min. )

  16. Preparation and characterization of anionic PU dispersions

  17. Diisocyanate : m-TMXDI , • Polyol : PTMEG-2000 , HO(CH2CH2CH2CH2O)nH • Hydrophilic monomer : DMPA , • Neutralizer : Triethyl amine , N(CH2)3 • Chain extender : Ethylene diamine ,H2N-CH2-CH2-NH2 Preparation of Anionic PU dispersions ( Prepolymer Mxing Process )

  18. + + n f n g ( +1) ( ) n f + g + + n n 80~90oC N-methylol pyrolidone (Prepolymerization) 50~60oC (Neutralization) (Water dispersion) (Chain extension) 20~30oC Prepolymer Mixing Process

  19. Urethane linkage Ether linkage Urea linkage HN HN - - C C - - NH NH ) ) 26 26 g f 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 n n m m Neutralized ionic group flexible n stiff stiff Hard segment Hard segment Soft segment Chemical structure Anionic poly(urethane-urea) dispersions

  20. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 HN HN HN - - - C C C - - - NH NH NH 3 3 4 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 n(C-O-C) 0.4 n(C-H) 0.3 Urethane Urea Carboxylic 0.2 n(C-N) n(C=O) Absorbance Urethane Urea 0.1 n(N-H) 0.0 500 1000 1500 2000 2500 3000 3500 4000 Wavenumber(cm-1) FTIR Analysis

  21. 12 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 9 9 HN HN HN - - - C C C - - - NH NH NH HN HN HN - - - C C C - - - NH NH NH 3 3 4 4 3 3 3 3 2 1 1 2 4 4 3 3 3 3 3 3 3 4 4 11 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 10 0 20 180 160 140 120 100 80 60 40 13C NMR Analysis 5 6 4 3 2 1 12 11 10 9 CDCl3 8 7 Chemical shift (ppm)

  22. 10% 3% DMPA DMPA (%) 8% 6% + (Ionic center) - COO HN Hydrophilicity Particle size Particle size distribution Effect of DMPA content on the particle size

  23. DMAP(%) Particle size No. of particle Viscosity Effect of DMPA content on the particle size / viscosity

  24. DMPA( %) 3% (DMPA) 1’st stage (Hard segment degradation) Hard segment % Hard segment 32% 6 Thermal stability 41 8 47 10 55 2’nd stage (Soft segment degradation) Degradation temp. Thermal degradation behavior

  25. 淺論燃料電池

  26. 發電效率高於傳統發電 低污染 低噪音 製造時間短 空間限制少 燃料電池之優勢 電化學反應 燃料電池發電 :化學能 燃 燒 電能 傳統熱機發電 :化學能 熱能 機械能 電能

  27. 燃料電池之分類

  28. 質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell ; PEMFC) 優點: 電能效率較佳 (因為氫氣遠較甲醇易氧化) 缺點: 氫源供應設施耗資龐大 缺乏輕便及有效的氫氣攜帶裝置 直接甲醇燃料電池 (Direct Methanol Fuel Cell ; DMFC) 優點: 1.直接使用液體甲醇燃料, 具有極高能量密度 2.系統結構簡單 3.甲醇燃料供應及儲存容易 缺點: 1.成本過高 2.目前使用之觸媒 (Pt/Ru)對甲醇 電化學效能不足 3.甲醇滲透現象嚴重 4.需藉由pump輸送液體甲醇燃料 PEMFC與DMFC之分析比較

  29. DMFC之單電池結構示意圖 定位孔 不銹鋼端板 密封框 雙極板 MEA (Membrane Electrode Assembly) 電極模組體 (電極-膜-電極 三合一組件) 雙極板 密封框 不銹鋼端板

  30. MEA示意圖

  31. PEM之基本需求 • 高質子傳導率 • 電子絕緣性 • 低燃料滲透性 • 高化學穩定性 • 高機械強度 • 高耐熱性 • 高尺寸穩定性

  32. 目前主流之PEM-NAFION 聚全氟磺酸 (poly(perfluorosulfonic acid) ; PFSA)是目前最普遍使用的質子交換膜,DU PONT公司將之商品化之名稱為NAFION 其化學式如下 離子簇 (質子交換側) 側鏈 主幹區

  33. DMFC之發展瓶頸 • NAFION價格過高 (800~1000 $US/m2) • PFSA膜保濕性不好,在高於80℃時水分迅速蒸發,造成導電度降低.所以電池效率下降 • 貴金屬電化學觸媒(Pt)用量偏高 • 甲醇滲透現象嚴重 甲醇透過濃差擴散和電遷移由膜的陽極側遷移至陰極側,在陰極電位與電催化劑作用發生電化學氧化,並與氧的電化學還原構成短路電池,在陰極產生混合電位,降低DMFC的開路電壓,且增加氧陰極極化和降低電池的電流效率

  34. H+ H+ H+ H+ H+ H+ DMFC工作原理示意圖 6e- 6e- CH3OH O2 H2O H2O CO2 CH3OH+H2O→CO2+6H++6e- 3/2O2+6H++6e-→3H2O CH3OH+3/2O2+H2O→CO2+3H2O 質子交換膜 觸媒層 氣體擴散層 陽極 陰極

  35. 磺酸化高分子複合材料之組成 Cyclo-Olefin-Copolymer 環狀烯烴共聚物 Polyethylene-Octene-Elastomer 聚乙烯-辛烯彈性體 CD-PET / COC / POE-MA COC之特性 1.低吸濕性 6.電器絕緣性 2.易成型 7.高耐熱性 3.高透明性 8.低雙折射 4.耐藥品性 9.高尺寸安定性 5.低雜質 • 作為相容劑 • MA與PET中的-OH末端基有極佳 • 的交互作用 • 混摻後可大幅改善PET的耐衝擊 • 性質

  36. COC結構及物性

  37. 測試項目 流變行為分析(Capillary Rheometer) 形態學分析(SEM,XRD) 熱性質分析(DSC,DMA,HDT) 機械性質分析(Tensile,Impact,Flexural test) 甲醇透過率分析(MeOH) CD-PET/COC/POE-MA 離子交換容量(IEC) 交流阻抗分析 自由體積分析 靜態接觸角分析

  38. Challenges for PEM fuel cell membranes Uwe Beuschern,y, Simon J. C. Cleghorn and William B. Johnson Gore Fuel Cell Technologies, W.L. Gore and Associates, Inc., 201 Airport Road, Elkton, MD 21921, U.S.A.

  39. INTRODUCTION • In this paper, we will examine the future of PEM membrane requirements in terms of two different parameters: temperature and relative humidity.

  40. EFFECT OF TEMPERATURE AND RELATIVE HUMIDITY • Temperature Glass transition temperature and Melting temperature. The mechanical properties are weaker The chemical stability • RH Ionic conductivity Water transport

  41. Stationary • 70℃ 100% • Automotive • 80℃ 75% • Portable • 60℃ 0% • High temperature • 95℃ 50%

  42. ~The End~Thank You

More Related