1 / 22

CH5. Oxidation and Reduction

CH5. Oxidation and Reduction. Redox chemistry involves changes in elemental oxidation states during reaction Historically – first man-made redox reactions might be forming metals 2 MO(s) + C(s)  2 M (s or l) + CO 2 (g) smelting

noleta
Télécharger la présentation

CH5. Oxidation and Reduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CH5. Oxidation and Reduction

  2. Redox chemistry involves changes in elemental oxidation states during reaction Historically – first man-made redox reactions might be forming metals 2 MO(s) + C(s)  2 M (s or l) + CO2(g) smelting MO = naturally occurring ores like ZnO, Fe2O3, cuprates Separate into 2 reactions: (a) C(s) + O2(g)  CO2(g) (d) MO(s)  M (s or l) + ½ O2(g)  limit O2 History

  3. Ellingham diagram Other possible reactions are: (b) C(s) + ½ O2(g)  CO(g) (c) CO(g) + ½ O2(g)  CO2(g) bronze = Cu/Sn alloy brass = Cu/Zn alloy

  4. Iron smelting

  5. Half-reactions • 2H+ (aqu) + 2e H2(g) Gf 0 • [H+] = 1 H2 pressure = 1 atm • shorthand notation is H+/H2 redox couple • 1. G = nFE • n = number of e transferred F = Faraday’s constant = 96480 C / mol E = std. potential for a rxn or half-rxn • E givesG and v.v. (thermodynamic data can be used to calc E) • note: 1 kJ = 1000 CV, so 1 eV  100 kJ/mol nEG

  6. Standard cell and potentials

  7. 2. Reverse rxn, reverse sign e + A  A E = + 2V • A A + e E =  2V • Spontaneous rxns (G neg) have positive potentials 4. Stoichiometry changes G, not E0 e + A  A E = + 2V, G = -190 kJ/mol 2e + 2A  2A E = + 2V, G = -380 5. Adding oxidation to reduction half-reactions 2 (e + A  A) E = +2V, G = 190 kJ/mol • B2  B + 2e E = 2.2V, G = + 425 • B2 + 2A  2A + B E = 0.2V, G = 425  2(190) = + 45 Half-reactions

  8. Nernst equation • . Nernst equation E = E (0.059 / n) log Q Q = reaction quotient, for aA  bB + cC ; Q = [B]b [C]c / [A]a • Ex: 2H2O  O2(g) + 4H+(aqu) + 4e E = 1.23V at pH=0 • Ex: What is the half-reaction potential to oxidize water at pH = 2? • E = E (0.059/4)log [H+]4 = 1.23V + 0.059(ΔpH) = -1.23V + 0.12V = -1.11V • Ex: What is the water reduction potential at pH = 2? • 2e + 2H+(aqu)  H2(g) E = 0 V at pH=0 • E = 0V  (0.059/2) log 1/[H+]2 = 0V  0.059(pH) = 0.12V

  9. Stability field for water Note that E(O2/H2O)  E(H2O/H2) = 1.23V (pH independent) E (V) 2e + 2H+(aqu)  H2(g) 0.00 - 0.059pH H2O  ½O2(g) + 2H+ + 2e -1.23 + 0.059pH H2O  H2(g) + ½ O2(g) -1.23V

  10. Kinetic factors Some redox reactions have slow kinetics, rates can be increased when overall Erxn > 0.6V (high overpotential exists) Converse statement – kinetically slow reactions may not occur at appreciable rates if Erxn < 0.6 V Examples of rapid reactions: 1. Erxn > 0.6V 2. outer-sphere mechanisms reaction does not make/break strong bonds or change coordination geometry Ex: e + [Fe(CN)6]3(aqu)  [Fe(CN)6]4(aqu) E = 0.38V hexacyanoferrate(III) hexacyanoferrate(II) ferricyanate ferrocyanate Ex: e + [Fe(5C5H5)2]+ [Fe(5C5H5)2]E = 0.31V ferrocenium ferrocene

  11. Ex: stability of MnO4 in aqu acid MnO4 / Mn2+ E = +1.51V at pH=0 4 ( 5e+ MnO4(aqu) + 8H+(aq)  Mn2+(aqu) + 4H2O ) + 1.51V 5 ( 2H2O  4e + O2(g) + 4H+(aqu) ) - 1.23V 4MnO4(aqu) + 12H+(aqu)  4Mn2+(aqu) + 6H2O + 5O2(g) + 0.28V Kinetic factors Examples of slow reactions: 1. Erxn < + 0.6V 2. Reactions that make/break strong bonds Ex. reactions with H2, N2, O2 (water redox chemistry, N2 fixation) Reactions where n > 1

  12. Kinetic factors surface passivation Ex: Al anodization ~pH = 7 2Al(s) + 6OH(aqu)  Al2O3(s) + 3H2O + 6e E ~ 1.7V ~ 1 m Al2O3 passive surface forms during reaction and acts as a barrier to OH- and O2 Ex: Si(m) in air forms a ~30nm SiO2 native oxide passivation layer Gate 1.0 nm SiO2 on Si http://nano.boisestate.edu/research-areas/gate-oxide-studies/

  13. Combining half-rxns • Combining red + red (or ox + ox) half-reactions: • E / VG / kJ/mol • 1. e + Mn3+ Mn2+ 1.5 148 • 2. e + MnO2 + 4H+ Mn3+ + 2H2O 0.95 92 • 3. 2e + MnO2 + 4H+  Mn2+ + 2H2O 1.23 240 • E3 = (n1E1 + n2 E2) / n3 = [(1)(1.5) + (1)(0.95)] / 2 = 1.23V • Combining red + ox half-reactions: • 1. e + Mn3+ Mn2+ +1.5V • 2. 2H2O + Mn3+ e + MnO2 + 4H+0.95V • 2H2O + 2Mn3+ Mn2+ + MnO2 + 4H+ +0.55V • this disproportionation is spontaneous in acidic soln, but slow

  14. 1.51 0.90 1.28 2.9 0.95 1.5 -1.18 HMnO4 H2MnO4 HMnO3 MnO2 Mn3+ Mn2+ Mn 2.09 1.23 1.69 Latimer & Frost diagrams for Mn in acid

  15. Frost diagrams prop to -G

  16. Frost diagrams

  17. Frost diagram for N

  18. pH effect Oxoacids are better oxidants in acidic solution than in basic solution 10e + 2HNO3 + 10H+ N2 + 6H2O E = 1.25V at pH=0 10e + 2NO3- + 6H2O  N2 + 12OH E = 0.25V at pH=14 because they combine with H+ to lose oxo or hydroxy ligands

  19. O2 + 4H+ + 4e 2H2O +1.23 2CN + Au  [Au(CN)2] + e0.60 O2 + 4H+ + 8CN + 4Au  4[Au(CN)2] + 2H2O E = +0.63 (pH=0) Ligand effects Note that e + Fe3+(aqu)  Fe2+(aqu) E = +0.77V But e + [Fe(CN)6]3(aqu)  [Fe(CN)6]4(aqu) E = +0.38V => cyano ligand stabilizes Fe3+ more than OH2 +1.80V +0.80 AgO  Ag+  Ag(m) pH=0 +0.60 +0.34 AgO  Ag2O  Ag(m) pH=14 +1.69 Au+  Au(m) pH=0 +0.60 [Au(CN)2]  Au(m) pH=0 Zn(m) Zn(CN)2(s) + Au(s) CN poisoning  inhibits cytochrome oxidase in mitochondria KOH [Zn(OH)4]2(aqu) + Au(s)

  20. Pourbaix diagram for Fe e- + Fe3+ → Fe2+ E = +0.77 V e- + Fe(OH)3 + 3H+ → Fe2+ + 3H2O E = E0 - 3(0.059) pH e- + Fe(OH)3→ Fe(OH)2 + OH- E = E0 - 0.059 pH

  21. Pourbaix diagram for Mn

  22. Example – Group 13

More Related