1 / 25

Cédric Lorcé

CLAS12 3rd European Workshop. Cédric Lorcé. Observability of the different proton spin decompositions. IPN Orsay - LPT Orsay. June 21 2013, University of Glasgow, UK. The outline. Summary of the decompositions Gauge-invariant extensions Observability Accessing the OAM Conclusions.

omar
Télécharger la présentation

Cédric Lorcé

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CLAS12 3rd European Workshop Cédric Lorcé Observability of the different proton spin decompositions IPN Orsay - LPT Orsay June 21 2013, University of Glasgow, UK

  2. The outline • Summary of the decompositions • Gauge-invariant extensions • Observability • Accessing the OAM • Conclusions Quark spin ? Dark spin ~ 30 % Reviews: [C.L. (2013)] [Leader, C.L. (in preparation)]

  3. The decompositions in a nutshell Canonical Kinetic [Ji (1997)] [Jaffe-Manohar (1990)] Lq Lq Sq Sq Sg Jg Lg Gauge non-invariant! [Chen et al. (2008)] [Wakamatsu (2010)] Lq Lq Sq Sq Lg Sg Sg Lg Gauge-invariant extension (GIE)

  4. The decompositions in a nutshell Canonical Kinetic [Ji (1997)] [Jaffe-Manohar (1990)] Lq Lq Sq Sq Sg Jg Lg Gauge non-invariant! [Chen et al. (2008)] [Wakamatsu (2010)] Lq Lq Sq Sq Lg Sg Sg Lg Gauge-invariant extension (GIE)

  5. The Stueckelberg symmetry [Stoilov (2010)] [C.L. (2013)] Ambiguous! Infinitely many possibilities! Coulomb GIE Lq Lq Sq Sq Lpot Lg Sg Sg Lg [Chen et al. (2008)] [Wakamatsu (2010)] Light-front GIE Lq Sq Lq Sq Lpot Lg Lg Sg Sg [Hatta (2011)] [C.L. (2013)]

  6. The gauge-invariant extension (GIE) [Ji, Xu, Zhao (2012)] [C.L. (2013)] Gauge-variant operator GIE2 GIE1 Gauge « Natural » gauges Rest Center-of-mass Infinite momentum Lorentz-invariant extensions ~ « Natural » frames

  7. The geometrical interpretation [C.L. (2013)] Parallel transport Non-local! Path dependence Stueckelberg dependence

  8. The semantic ambiguity Quid ? « physical » « measurable » « gauge invariant » Observables Measurable, physical, gauge invariant and local E.g. cross-sections Path Stueckelberg Background Expansion scheme dependent but fixed by the process E.g. collinear factorization Light-front gauge links Quasi-observables « Measurable », « physical », gauge invariant but non-local E.g. parton distributions

  9. The observability Observable Quasi-observable Not observable Canonical Kinetic [Ji (1997)] [Jaffe-Manohar (1990)] Lq Lq Sq Sq Sg Jg Lg [Chen et al. (2008)] [Wakamatsu (2010)] Lq Lq Sq Sq Lg Sg Sg Lg

  10. The gluon spin Gluon helicity distribution « Measurable », gauge invariant but non-local Light-front gauge Light-front GIE [Jaffe-Manohar (1990)] [Hatta (2011)] Local fixed-gauge interpretation Non-local gauge-invariant interpretation

  11. The kinetic and canonical OAM Kinetic OAM (Ji) [Ji (1997)] [Penttinen et al. (2000)] [Kiptily, Polyakov (2004)] [Hatta (2012)] Pure twist-3 Quark naive canonical OAM (Jaffe-Manohar) [Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [C.L., Pasquini (2011)] Model-dependent ! Canonical OAM (Jaffe-Manohar) [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] No gluons and not QCD EOM! but [C.L., Pasquini (2011)]

  12. The orbital motion in a model • [C.L., Pasquini, Xiong, Yuan (2012)] Average transverse quark momentum in a longitudinally polarized nucleon « Vorticity »

  13. The conclusions • Kinetic and canonical decompositions are physically inequivalent and are both interesting • Measurability requires gauge invariance but not necessarily locality • Jaffe-Manohar OAM and gluon spin are measurable (also on a lattice) Reviews: [C.L. (2013)] [Leader, C.L. (in preparation)]

  14. Backup slides

  15. The path dependence [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] [Ji, Xiong, Yuan (2012)] [C.L. (2013)] Orbital angular momentum Reference point [Jaffe, Manohar (1990)] [Ji (1997)] Canonical Kinetic ISI FSI Drell-Yan SIDIS

  16. The quark orbital angular momentum [C.L., Pasquini (2011)] GTMD correlator Wigner distribution Orbital angular momentum Unpolarized quark density Parametrization [Meißner, Metz, Schlegel (2009)]

  17. The emerging picture Longitudinal Transverse Cf. Bacchetta [Burkardt (2005)] [Barone et al. (2008)] [C.L., Pasquini (2011)]

  18. The Chen et al. approach [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)] Gauge transformation (assumed) Pure-gauge covariant derivatives Field strength

  19. The gauge symmetry [C.L. (2013)] Quantum electrodynamics « Physical » « Background » Stueckelberg Passive Active Activex (Passive)-1

  20. The phase-space picture GTMDs TMDs PDFs FFs GPDs Charges 2+3D 2+1D 0+3D 0+1D 2+0D

  21. The phase-space distribution [Wigner (1932)] [Moyal (1949)] Wigner distribution Galilei covariant • Either non-relativistic • Or restricted to transverse position Probabilistic interpretation Heisenberg’s uncertainty relations Expectation value Position space Momentum space Phase space

  22. The parametrization @ twist-2 and x=0 GTMDs TMDs GPDs [Meißner, Metz, Schlegel (2009)] Parametrization : Quark polarization Nucleon polarization Monopole Dipole Quadrupole

  23. OAM and origin dependence Naive Relative Intrinsic Depends on proton position Momentum conservation Transverse center of momentum Physical interpretation ? Equivalence Intrinsic Naive Relative

  24. Overlap representation Fock expansion of the proton state Fock states Simultaneous eigenstates of Momentum Light-front helicity

  25. GTMDs TMDs GPDs Overlap representation Fock-state contributions [C.L., Pasquini (2011)] [C.L. et al. (2012)] Kinetic OAM Naive canonical OAM Canonical OAM

More Related