1 / 24

Polarization in Pulsar Wind Nebulae

Polarization in Pulsar Wind Nebulae. Delia Volpi In collaboration with : L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italy. Observations : optical and X-ray. Continnum emission Jet-torus structure

oona
Télécharger la présentation

Polarization in Pulsar Wind Nebulae

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Polarization in Pulsar Wind Nebulae Delia Volpi In collaborationwith: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italy

  2. Observations: optical and X-ray Continnumemission Jet-torusstructure Crab Nebula PWN Optical (Hubble) X-ray (CHANDRA) Vela PSR 1509-58 G 54.1+0.3

  3. RELATIVISTIC MHD Models • Analytical 1-D models (Kennel & Coroniti ,1984 --Emmering and Chevalier,1987): no jet-torusstructure. • Analytical 2-D models (Bogovalov & Khangoulian, 2002 --Lyubarsky, 2002): anisotropicPoynting+kineticenergyfluxtorus and oblate TS. Jetscollimatedbyhoopstressesdownwards TS. • RMHD simulations (Komissarov and Lyubarsky, 2003 – Del Zanna et al., 2004) solve 2-D hyperbolicequations and confirmjet-torusmorphologytheories Lyubarsky, 2001

  4. IDEAL RMHD EQUATIONS ECHO: GRMHD 3-D VERSION (Del Zanna et al., 2007, A&A, 473, 11)

  5. Numericalmodel • 2-D (axysimmetric) RMHD shock capturing code in sphericalcoordinates(Del Zanna et al., 2002, 2003, 2004) • InitialcoldultrarelativisticPulsar Wind withvradial and r-2 +SNR+ISM Lorentzfactor (conservationofenergyalongstreamlines) : Anisotropicenergyflux: Toroidalfield: • Space and timeevolutionof RMHD equations+maximumparticleenergy (Lorentzfactor) equationwithadiabatic and synchrotronlossesaveraged on the pitch angle: (b =/2) w=c2+4p

  6. Synchrotronemissionrecipes • Emittingparticles’ isotropicdistributionfunction at termination shock (TS = 0) (Kennel & Coroniti, 1984b): • Post-shock distribution function (obtained from conservation of particles’number along streamlines and under condition of   0.5): spectralindex

  7. Synchrotronemissionrecipes • Emissioncoefficient in observer’sfixed frame: Relativisticcorrections: • Cut-offfrequencyforsynchrotronburn-off (evolved in the code from the maximumparticleenergy): optical or X-rayfrequencyofobservation observer direction versor

  8. Synchrotronemissionrecipes • Surfacebrightness: • Stokesparameters (linearpolarization): • Polarization fraction () and polarization direction (P): • Spectral index () for two frequencies (1, 2) and integrated spectra (F): localpolarization position angle betweenemittedelectricfield and Z d=distanceofemittingobject

  9. Wind magnetization • Runs with effective=0.02 (averaged over ) • A (=0.025, b=10) B (=0.1, b=1)

  10. Results: flow structuremaps =0.025, b=10 narrow striped wind region =0.1, b=1 large striped wind region • RunA: a) Stronger pinching forces  smaller wind zone; b) Equipartition near TS; c) Larger magnetized region •  particles loose most of their energy nearer to TS; d) Less complex magnetization map. • Supersonic jets and equatorial outflow: v  0.5-0.7c (as in Crab Nebula-Hester-2002, Vela-Pavlov 2003).

  11. Results: surfacebrightnessmaps =0.025, b=10 narrow striped wind region • Optical and Xemittingparticles: • = 0.6 (Veron-Cetty & Woltjer,1993) • Cut-offfrequencies: • =5364 Å in optical maps (V.C.1993) • h=1keV in X maps (Chandra) • Angles (Weisskopf, 2000): • inclinationofsymmetryaxis:300 • rotation respectto North: 480 • I normalized respect to maximum • value, logarithmicscales • Largeremittingregions in optical • thanin X bandsynchrotron burn-off • Internalregions: system ofrings • (connectedtoexternalvortices), • brighterarch (inner ring), a centralknot • (connectedtopolarcuspregion) due to • Doppler boosting (very strong near • TS, vc) • Strongeremissionnear TS where • magnetization and velocity are higher =0.1, b=1 large striped wind region

  12. HIGH RESOLUTION POLARIZATION MAPS TOY MODEL UNIFORM EMITTING TORUS WITH B TOROIDAL AND V RADIAL : ANGLE SWING INCREASES WITH V AND BIGGER IN THE FRONT v=0.2C θ=90° - - v=0.5c θ=75° -- v=0.8c θ=60°=>INFORMATION ABOUT FLOW VELOCITY POLARIZATION FRACTION=>MAXIMUM EVERYWHERE SAME EFFECT WITH A KC FLOW

  13. Results: opticalpolarizationmaps =0.025, b=10 narrow striped wind region • Synchrotron emission  linear • polarization • Polarizationfraction: Bpoloidal • Normalizationagainst • (+1)/(+5/3)70% • Alongpolaraxis: • higherpolarized fraction • (projected B  line of sight) • Outerregions: depolarization • (oppositesignsofprojected • Balonglineofsight) • Polarization direction: vflow • Ticks: ortogonaltoB, lenght • proportional to Π (Schmidt, 1979) • Polarization angle swing • (deviationofvector direction) • in brighter arcs, v  c, • strong Doppler boost • Biggereffect in the front side • Originof the knot????? • RunB: more complexstructure • slow velocity =0.1, b=1 large striped wind region

  14. Results: X-raypolarizationmaps =0.025, b=10 narrow striped wind region =0.1, b=1 large striped wind region

  15. Results: spectralindexmaps =0.025, b=10 narrow striped wind region = + 1 • ValuesofCrab Nebula • Opticalmapsobtainedwith: • 1=5364Å, 2=9241Å • (Veron-Cetty & Woltjer, 1993) • X-raymapsobtainedwith: • h1=0.5keV, h2=8keV • (Mori et al., 2004) • Spectralindexgrowsfrom • innertoouterregions • RunA: X-raysimulatedspectral • indexmapssimilartoonesof • Crab Nebula (Mori et al, 2004) =0.1, b=1 large striped wind region

  16. Observations: gamma-ray • MAGIC Telescope (J.Albertet al., Arxiv:0705.3244v1, 2007) • Crab Nebula: gamma-ray standard candle → target of new instruments • Emission: acceleratedelectrons+targetphotons (CMB+FIR+sync) • HESS: TeVfrequencies; GLAST: 20MeV-300GeV • Disantanglemagneticfield and distributionfunction+adroniccomponent

  17. Synchrotron and IC emissionrecipes • Primordialisotropicradio-emittingpopulation (A&A,1996): • Acceleratedwindpopulation at TS (A&A,1996): • Evolveddistributionfunction (Del Zanna et al., 2006): • Integration between spectral power per unit of frequency and distributionfunction: synchrotron=> monochromaticfrequency IC => respect to ε and ν, total differential cross section, 3 targets (FIR, CMB, SYNC) (Blumenthal and Gould, 1970)

  18. Results: IC =0.025, b=10 narrow striped wind region Multislopes Disconnetted areas in maximum particle energy IC emission in excess Energy map: Compressionaround TS ofB. Parameter?Distributionfunction?

  19. Results: IC =0.025, b=10 narrow striped wind region Sizereductionwithincreasingfrequency: alongy-axis Jet and torusvisiblefor radio electron distribution, no observationalcounterpart

  20. Results: IC =0.025, b=10 narrow striped wind region Time-variability: gamma-rayssimilartoX-rays.

  21. Conclusions • Spectra: wellreproducedfrom radio toX-ray. Excess in gamma-ray due tocompressionofBaround TS (fluxvortices). • Brightnessmaps: jet-torusstructure in gamma-raysas in X-rays (high resolution). Observeddimensions. • Gamma-ray (asX-ray) time-variabilityiswellreproducedby MHD motions. COMPLETE SET OF DIAGNOSTIC TOOLS FOR PWNe AND OTHER EMITTING SOURCES (AGN, GRB) • Future work: directevolutionof the distributionfunction; investigationof the parameterspace; applicationstootherPWNe (differentevolutionstages) and othernon-thermalemittingsources (AGN, GRB). • Paper: Simulatedsynchrotronemissionfrom Pulsar Wind Nebulae (L.Del Zanna, D.Volpi, E.Amato, N.Bucciantini, A&A, 453, 621-633, 2006) • Paper: Non-thermalemissionfromrelativistic MHD simulationsof pulsar windnebulae: fromsynchrotronto inverse Compton, D.Volpi, L. Del Zanna, E. Amato, N. Bucciantini, A&A, 2008, 485, 337

  22. WHICH KIND OF CONTINUUM EMISSION FROM RADIO TO SOFT-GAMMA ? CRAB NEBULA: SAME FRACTION AND POSITION ANGLE OF POLARIZATION FROM RADIO TO X-RAYS=> SIGNATURE OF SYNCHROTRON EMISSION OPTICAL (SHKLOVSKY, 1952- DOMBROVSKY, 1954) SYNCHROTRON EMISSION=> LINEAR POLARIZATION WITH A MAXIMUM OF ≈ 80% IMPORTANCE OF POLARIZATION: GEOMETRY OF THE SOURCE (PULSAR WIND) PROPERTIES OF THE SOURCE=>MAGNETIC FIELD STRENGHT AND DIRECTION 3) ACCELERATION OF PARTICLES OBTAIN SYNTHETIC MAPS FROM NUMERICAL SIMULATIONS AND COMPARE WITH OBSERVATIONS: STUDY OF POLARIZATION

  23. IC emissionrecipes • Integration between distribution function (primordial and wind) and power per unit of frequency respect to ε and ν(Blumenthal&Gould, 1970) • Incidentphoton density per unitoffrequency: IC from CMB target IC from FIR target IC from SYN target

More Related