1 / 50

A new approach towards deciphering the protein code: The protein assembly model

A new approach towards deciphering the protein code: The protein assembly model. Claire Lesieur lesieur@lapp.in2p3.fr. Membrane (Lipids). Proteins. Nucleus (chromosome). Elements of the living world. Protein. Nucleus. Lipids. DNA. CHON. Chromosome. Protein Biological activities.

oren
Télécharger la présentation

A new approach towards deciphering the protein code: The protein assembly model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A new approach towards deciphering the protein code: The protein assembly model Claire Lesieur lesieur@lapp.in2p3.fr

  2. Membrane (Lipids) Proteins Nucleus (chromosome) Elements of the living world Protein Nucleus Lipids DNA CHON Chromosome

  3. Protein Biological activities • Cutting • Recognition • Enzyme • Signaling • Carrier • Shape generator • Road networks

  4. Structure-function relationshipin proteins • Function • Shape • How the shape provides a particular function • How the shape is acquired

  5. ? ? GKKHDGATTYQW

  6. The protein folding problem • How it folds: Mechanisms of protein folding • How the information is encrypted in the sequences: CODING problem ADRTGGILLKMHGGARECVVP

  7. All the information necessary for the protein folding is within the protein primary sequence C.B. Anfinsen, Haber, E., Sela, M. & White, F. H. , Proc. Nati. Acad. Sci. USA 47 (1961) 1309-1314. Levinthal’s paradox(1968): not random search but directed Levinthal, C. (1968) J. Chim. Phys. 65, 44-45.

  8. COOH H2N s-hours ms Structure Tertiaire Structure primaire Structure Secondaire Mechanism Short range interaction long-range interactions short-range interactions

  9. Code: still unknown X-ray crystallography + NMR: PDB 3D modeling: PDB ~ 70 % Sequence similarity: 3D modeling 70 % similarity: different shape Low sequence similarity: similar shape Amino acids on the surface of proteins: changeable

  10. Transmembrane domains of Membrane proteins b-strands transmembrane domain: 1010101 a-helicetransmembrane domain: 11111111111111111

  11. Biologically active amino acids

  12. Sequence-Shape predictions • Geometrical constrain • Chemical constrain

  13. To read sequences you need to determined comparable sequences • Domains • Shape and role ? Sequence Pattern ? Sequence Pattern

  14. Protein assembly

  15. Aerolysine Trends in Microbiology (2000). Vol 8 (4):169-172

  16. ER Cholera toxin CtxA CtxB5 • AB5 toxin • A catalytic subunit • B receptor binding subunit • GM1: cell receptor • Endocytosed and traffic to the ER • ADP ribosylation of Ga subunit • Increase of cAMP leading to water loss

  17. Experimental approach

  18. Assembly in vitro pH 7 pH 1 15 min Pentamere Monomere

  19. 2D structural level: short range interaction 5 2 10 0 5 -2 10 5 -4 10 pH 1 5 -6 10 Mean residue Molecular Ellipticity pH 7 5 -8 10 Native 6 -1 10 6 -1,2 10 200 210 220 230 240 250 Wavelength (nm)

  20. 3D structural level: long range interaction • Trp-fluorescence 300 lex= 295 nm lem=352 nm Fluorescence Intensity (a.u.) 200 Fluorescence Intensity 100 unfolded 0 Time (min) 320 340 360 380 Wavelength (nm)

  21. Functional test His CtxB 100 80 Function 60 HISTIDINE 40 20 4,5 5 5,5 6 6,5 7 7,5 8 0 pH

  22. CtxB5 …

  23. LTB CtxB Cholera toxin B Heat labile enterotoxin B

  24. N-terminal 100 LTB CtxB 80 Function 60 N-terminal 40 20 0 4,5 5 5,5 6 6,5 7 7,5 8 pH

  25. LTB5

  26. Kinetics differences On pathway intermediates differences It is particular amino acids that are responsible for each individual step of assembly and folding

  27. Fundamental question • Alzheimer, Parkinson, Prion diseases Protein X: FOLD state: healthy Information for interfaces (Protein X)n: Assembly state: Lethal

  28. Theoritical approach • Protein Interface formation • Rules? • Mechanism? • Preferential geometries related to preferential sequences of amino acids?

  29. INTERFACES: Zone de contact entre monomeres voisins

  30. Analyses des interfaces Interface Trimer pentamer heptamer Brin 1 Brin 2 0101 0101 Ch111Ch n.a. Ch111Ch 1111/1

  31. Trimeric Domain

  32. Fibritin like domain

  33. Oligomeric proteins Nombre de monomer 2 3 4 5 6 7 8 9 10 11 12 Nombre de cas 5722 1035 2340 168 721 46 512 45 87 8 205

  34. Programme detection Protein Interfaces Monomer M 513 -524 LMITTECMVTDL aaa-bbbbbbb- Monomer M+ 1 35-49 GRNVVLDKSFGAPTI --bbbb-------bb Distances

  35. 2HY6 (30) 1 30 beta 1N9R (68) 19 86 alpha 1WNR (94) 1 94 a+b 2F86 (129) 344 471 1JBM (78) 10 88 rc 1G31 (107) 5 111 1LNX (74) 8 80 1Q57 (483) 64 549 2RAQ (94) 3 97 1GRL (518) 6 523 1IOK (524) 2 526 1PZN (240) 96 336 1J2P (229) 4 233 1Y7O(194) 1 194 2F6I (189) 177 367 1TG6 (193) 1 193 2CBY (179) 15 194 1OEL (525) 2 525 1LEP (92) 1 92 3BDU (51) 2 53 1HX5 (92) 5 97

  36. PUTATIVE LIPOPROTEIN from E. CAROTOVORA 3BDU 20-29, 38-53

  37. Common protein interfaces of unrelated proteins 3BDU 1--111011-110110--10 1G31 0--1-1001-100100--00 1JBM 11001000101100101101 1LNX 1--0100010110000---1 1N9R 0--0100011110010--11 1J2P ----1000101100101--1 1HX5 ------0011110010--11 1LEP 0---10001000--00--11 Con2 ----1-001-1100-0-

  38. 1LEP: 1-8, 88-94, 40-57 1WNR: 1-8, 88-94, 44-57, 62-77 1HX5: 5-11, 94-97, 51-62, 68-80,27-30 1G31: 8-15, 104-111, 68-85

  39. 1N9R yeast Methanobacterium Thermautriophicum: extremophile 1JBM P. aerophilum: bacterium 1LNX

  40. 1 yeast 1 + 1 Methanobacterium Thermautriophicum: extremophile 1JBM: 12-18, 42-50, 64-83 1 +1 +1 1N9R: 66-82 P. Aerophilum Hyperthermophilic bacterium 1LNX: 10-15, 25-32, 40-48, 63-77

  41. 2CBY

  42. Conclusion • Geometry and function related • Family of protein interfaces • Assembly keys

  43. Future • Classification of protein interfaces: Database • Systematic analysis of protein interfaces-subjective classification • Mathematical approach: Laurent Vuillon (LAMA) • Functional analysis of protein interfaces • Protein Assembly mechanism from block: Giovanni Feverati • Stoechiometry/Symmetry: Paul Sorba • Experimental tests: Claire Lesieur

  44. Acknowledgment • Alicia Ng Ling • Mun Keat Chong • Boon Leng Chua • Danyang Kong • Giovanni Feverati • Paul Sorba

More Related