1 / 30

Model Checking of Robotic Control Systems

Presenting: Sebastian Scherer Authors: Sebastian Scherer, Flavio Lerda, and Edmund M. Clarke. Model Checking of Robotic Control Systems. Outline. Motivation Why verification Scope Control software Method Case Study Conclusions. Why verify robot software?. Failure is expensive:

peers
Télécharger la présentation

Model Checking of Robotic Control Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Presenting: Sebastian Scherer Authors: Sebastian Scherer, Flavio Lerda, and Edmund M. Clarke Model Checking of Robotic Control Systems

  2. Outline • Motivation • Why verification • Scope • Control software • Method • Case Study • Conclusions

  3. Why verify robot software? • Failure is expensive: • Interplanetary exploration • Crash / Rollover • Autonomy increases responsibility: • Human interaction • Large forces and momenta

  4. Start by verifying this part. The scope of our approach Software Goal Typical mobile robot architecture Hardware Specified Accumulation Planning Preprocessing Controller Actuators Sensors Environment

  5. Control systems are implemented in software • Main loop is only a small fraction of the control software: • Initialization • Exception handling • Conversion • Fatal bugs can be in any line of the code. Software Goal Typical mobile robot architecture Hardware Specified Accumulation Planning Preprocessing Controller Actuators Sensors Environment

  6. Code of controller + environment(plant) import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); + Outline • Motivation • Method • Capabilities & Limitations • Method • Model Checking • Case Study • Conclusions

  7. Capabilities of our method • Utilizes environment (plant) of the control system. • Simulates behaviour: • Determines stability. • Models influence of noise. • Checks performance specifications. • Computes ranges of trajectories. • Checks programming errors: • Null pointer exceptions. • Dead lock, concurrency bugs. • Errors affecting the behavior. • Code checked is identical to executed code.

  8. Limitations of our method • Discrete method: • Makes assertions only about a particular initial condition. • Continuous states are approximated up to a fixed point precision. • Precision often determines the length of a simulation trace and the size of the state space to explore. • Noise is approximated by a discrete set of values. • Detailed model: • Requires model relating inputs and outputs. • Additional memory and computation time. • Assumptions: • Time elapses only while tasks sleep. • Unbounded variables like time and distance must be abstracted manually.

  9. Abstract controller Source code of controller import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Source code including the environment Verify actual source code Code of controller + environment(plant) import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); + Model check software with a physical environment

  10. Method Software executed on robot Environment model Actual Robot • Execute the source code. • After all tasks sleep execute the environment. • Equivalent states are not revisited. import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Sensors Actuators

  11. Method Software executed on robot Environment model Actual Robot • Software executes until all tasks yield. import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance();

  12. Method Software executed on robot Environment model Actual Robot • Software executes until all tasks yield. • Commands are set. Sensors are read. Time elapses import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance();

  13. Method Software executed on robot Environment model Actual Robot • Software executes until all tasks yield. • Commands are set. Sensors are read. Time elapses • Software executes with new sensor values. import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance();

  14. Method Software executed on robot Actual Robot Environment model • Software executes until all tasks yield. • Commands are set. Sensors are read. Time elapses. • Software executes with new sensor values. • Commands are set. Sensors are read. Time elapses with new commands. import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance();

  15. Model checking Transitions import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); • Model consists of states and transitions. • Java byte code specifies a model. • Verify a model against a specification given as logic properties. • The algorithm visits all states of the model to verify that none of the specified properties are violated. • If the same state is reached twice backtrack. States

  16. Environment Robot source code Java Virtual Machine of Model Checker Host JVM running Java PathFinder Java PathFinder • All states are explored to find a violation of the properties. • Executing the byte code generates successors. • If no new successors are generated the search backtracks. • Environment byte code is executed on host JVM. No intermediate states are generated from it. • Environment stores only necessary state variables.

  17. Outline • Motivation • Method • Case Study • Architecture • Verification • Model • Results • Conclusions

  18. Overview • Robot has to follow a line and maintain a constant speed. • Native Java microcontroller executes the code. • Check source code without change.

  19. Architecture • Actuators • Steering • Motors • Sensors • Light sensors • Encoder

  20. Software • 3 tasks running with a fixed frequency of 33Hz. • Task 1: Reads sensor values. • Task 2: Controls the steering. • Task 3: Controls the velocity. • A fixed rate scheduler determines the execution order and duration. Task 1 Task 2 Task 3

  21. Verification • Need model of the environment. • Need definition of states. • Verify robot starting from initial condition offset from center of line and on a straight line.

  22. Environment model Inputs: Velocity command Steering command • Two models necessary • Model relate commands to sensor information • Sensed position over line depends on • Steering command • Velocity command • Sensed encoder velocity depends on the velocity command. Sensed position model Output: Encoder velocity Input: Velocity command Sensed velocity model Output: Encoder velocity

  23. Determining the model • One way to obtain a model of the environment is system identification. • Performed experiments and obtained a second-order model for velocity and a fourth-order model for steering • Quality of sensor gave a better fit for the velocity

  24. States Discrete State Continuous State • Continuous state: • 6 state variables • 2 inputs • States are discretized up to a fixed precision to terminate on stability and disambiguate quasi-equal states. • Monotonic variables such as time or distance are (manually) abstracted. • DESCRIBE PICTURE import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = + State space model

  25. Non-Determinism • Possible to explore non-determinism in the software and environment. • Model checking explores a wider spread of trajectories. • Non-determinism is discrete. Differential equations are deterministic. Red trajectory shows an actual trace of the robot. Blue region is the spread of trajectories covered by the model checker.

  26. Results • Added different kinds of non-determinism to model. • Encoder reading off by -10, 0, +10 ticks • Failure of one sensor in the array of light sensors • Commanded steering and velocity pulsewidth is not accurate. Wheel Slip Ground

  27. Results • We verified a set of properties of the control software. • No programming errors (e.g. Null pointer exceptions) were found.

  28. Conclusion • Model checker covers a sufficient range of trajectories to simulate all inputs to program. • Seeded type conversion bug was found. • Verifies software for robot controllers directly. • Discretization, abstraction and extraction of continuous states enable efficient verification. • Exhaustive exploration of non-determinism such as random sensor failure. • Aids the control system designer by direct verification of all reachable states of the model.

  29. Future work • Prove correctness of model checking algorithm • Extend notion of discretization of state space to be an over-approximation. • Provide integrated support for modeling the environment • Integrate with higher level software interfaces • Check complex systems • Extend to languages other than Java

  30. Contact Information: Sebastian Scherer basti@andrew.cmu.edu http://www.cs.cmu.edu/~basti/ Questions? Comments?

More Related