1 / 69

固体表面化学的理论研究方法、模型和应用

固体表面化学的理论研究方法、模型和应用. 吕鑫 2005.5.19. State Key Laboratory for Physical Chemistry of Solid Surfaces. 厦门大学固体表面物理化学国家重点实验室. 理论模型. 理论方法. 物理体系. 物理、化学性质 (实验研究). 表面吸附是固体表面化学研究的一个中心问题,是一切表面化学现象的根源. 固体表面化学的理论研究 方法、模型与应用. 分类 ( 理论方法、模型方法、物理体系) 层板模型方法与应用 ( Slab Model and Its Applications)

penny
Télécharger la présentation

固体表面化学的理论研究方法、模型和应用

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 固体表面化学的理论研究方法、模型和应用 吕鑫 2005.5.19 State Key Laboratory for Physical Chemistry of Solid Surfaces 厦门大学固体表面物理化学国家重点实验室

  2. 理论模型 理论方法 物理体系 物理、化学性质 (实验研究) 表面吸附是固体表面化学研究的一个中心问题,是一切表面化学现象的根源

  3. 固体表面化学的理论研究方法、模型与应用 • 分类(理论方法、模型方法、物理体系) • 层板模型方法与应用(Slab Model and Its Applications) 3. 簇模型方法及其应用(Cluster Model and Its Applications)

  4. 分类 • 理论方法分类: 经典力学方法(MM, MD, MC) 、量子力学方法 (DFT, HF, CI) 、杂交方法(QM/MM, AIMD) 、其他半经验方法(AM1,PM3等) • 模型分类: 局域模型(簇模型方法)、周期性模型 3. 应用体系分类: 共价体系、离子体系、金属体系、HB体系、VDW体系

  5. 2 Slab Model2.1 First-Principle Method • 量子化学问题均在于求解Schrödinger方程,对于大块固体,其Schrödinger方程表示为: H(Rm,rn) = E (Rm,rn) (1.1) Problem: H将是无限维的,上式很难求解。 Solutions: Introducing some approximations.

  6. A. Born-Oppenheimer Approximation: H({Rm}) '(rn)= E({Rm}) '(rn) (1.2) (核运动和电子运动分离) B. Single-Particle Approximation for Solving The Wavefunctions of Electrons (电子波函数的单粒子近似) C. Energy Band Theory (DFT) and Crystal Orbital Theory (HF) (see A. Gross, Surf. Sci. Rep. 1998, 32, 291)

  7. 2.2 Density functional Theory, Kohn-Sham Equation Eec(n) exchange-correlation functional ec(n) exchange-correlation energy per particle

  8. 2.3 PSPW and Super Cell • Pseudopotentials for inner shells • Plane-wave functions for valence shells • Periodic Boundary Conditions and Super Cell Method for Solid • Slab Model for Solid Surface • Car-Parrilleno Molecular Dynamics Method

  9. Example 1: SO2 on MgO(100) and CuMgO(100) Slab model: 4 atomic layers QM Method: DFT-GGA, PSPW (see J. A. Rodriguez et al, J. Phys. Chem. B 2000, 104, 7439.)

  10. Bonding Modes of SO2 on MgO(100) Surface Eads (kcal/mol) Cu-Free 2-O,O on Mg 8 1-S on O 11 3-S,O,O 21 Cu-dopping 2-O,O 28 1-S on O 25

  11. 3. Cluster Model 3.1 Concept 其基本思想在于用一小簇原子组成的簇来类比表面, 其首要问题就是如何消除簇模型的“边界效应” 。 定域化

  12. Localization: Adams-Gilbert Equation • 1)      FC: 小簇C的Fock算符,包括簇C内的动能与各种相互作用能; • 2)     VSlr :环境S对簇C的长程作用势,包括簇C与环境S间的电子—电子、电子—核、核—电子、核—核等四种库仑势; • 3)      VSsr : 环境S对簇C的短程作用势,包括簇C与环境S间的电子交换势,反映出簇C与环境S间的轨道相互作用。 • 4)      ρ VSsr ρ: 定域化势(亦称屏蔽势)

  13. 3.2 How to reach a successful cluster modeling? 关键问题: • 怎样选择簇模型,使之与环境的短程作用尽可能小(必须注意,这并不意味着簇与环境的相互作用能很小)? • 怎样合理地考虑环境对簇的长程作用?

  14. 3.3 Schemes of Cluster Modeling • Simple Cluster Model • Embedded Cluster Model (for ionic solids) • Saturated Cluster Model (for covalent solids) • ONIOM Model (hybrid QM/QM or QM/MM method, readily for covalent solids)

  15. 3.4 Simple Cluster Model • Simple cut-out !!!!! • Capacity? (may give qualitatively reasonable simulation results for VDW, HB, metal and ionic solids) • How to make a reasonable cut-out? • How to determine the electronic state of the cluster?

  16. 3.4.1 Cluster Model for Metal Surface • Dilemma: The larger, the more reasonable, but more expensive; the smaller, the more economical with higher accuracy, but less reasonable. • What’s the way out? “Surface molecule”

  17. Convergence problem *H/Ni(111): Ni19 (2.75kcal/mol) Ni22(15 kcal/mol) Ni40(46.5kcal/mol) Ni4(55kcal/mol) Expt(63kcal/mol) • Examples: 1) P.S. Bagus, et al , J. Chem. Phys., 78 (1983) 1390; 2) C.W. Bauschlicher Jr., Chem. Phys. Lett., 129(1986) 586; 3) P.E.M. Siegbahn et al., Chem. Phys. Lett., 149(1988) 265.*

  18. Concept of “Metallic Atom” • Two kind of motions of electrons in bulk metal: 1) Localized ; 2) Delocalized--Free electrons. • The atom in a bulk metal should be quite different from a simple atom, e.g. a) R(Cr-Cr):1.68 Å ( Cr2 ), 2.49 Å (bulk Cr) b) Pd atom: 4d10// bulk Pd:(4d9.635sp0.37)

  19. Metallic Basis Functions • The attractive potential of a metallic atom is: • m(r) = -(Z*/r)exp(-kSr) vs a(r) = -Z*/r • 1/kS --- Thomas-Fermi Screening Length. • Slater exponents: m = a +  (1) • With the help of Free Electron Theory, we have: •  = - (a(n))/n(inner shell) (2) •  = (a(n-1))/n(outermost valence-shell) (3) ( N. Wang et al., J. Mol. Struct. (Theochem), 262(1992) 105.)

  20. 1s 2sp 3sp 3d 4sp a 26.47 11.09 4.55 3.94 1.40 m 26.46 10.96 4.01 3.35 1.84 Metallic m and Atomic a of Co Atom.

  21. CO-like Co-CO CO/Co Ni-CO CO/Ni MO’s a m UPS a m UPS 4 21.99 16.68 16.8 20.75 16.43 16.6 1 16.46 13.10 13.2 15.52 13.35 13.6 5 18.27 12.70 13.8 16.14 12.33 12.3 4-1 5.53 3.58 3.5 5.23 3.08 3.0 5-1 1.81 0.4 0.6 0.62 1.02 1.3 UHF/STO-3G Calculations M-CO cluster X. Xu et al., Surf Sci., 274 (1992) 378

  22. Choice of Multiplicity • Metallic Cr: 3d5.244s0.76 (3d64s0 -- 3d54s1) • 3d64s0: 5, 3, 1; 3d54s1: 7, 5, 3,1 • Note: UHF wavefunctions of a quintet are mixtures of wavefunctions from quintet and septet, rather than a pure quintet.

  23. Multipl. 1 (3) (5) 7 CO/Cr 4 18.82 16.80 16.74 17.48 16.6 1 14.66 12.66 12.60 13.23 12.6 5 13.91 11.67 12.03 12.68 Multiplicity Dependency in the UHF Calculations of Cr-CO • *Fe: 3d7.344s0.61// (3d84s0 - 3d74s1)//(3),1 - 5,3,1 • *Co: 3d8.374s0.63//(3d94s0 - 3d84s1)//(2) - 4,2

  24. Metallic State Principle M Mn M Mn M Ground State Bulk Metallic State Composition process Adiabatic decomposition proce

  25. Some relative methods • Bond-Prepared State Principle (P.E. M. Siegbahn et al., Stockholm, 1988) • DAM (Dipped Adcluster Model) (H. Nakatsuji, Kyoto, 1991) • Many-Electron Embedding Theory (J.L. Whitten, 1980; 1987)

  26. Example 2:NO2/Au(111) X. Lu, J.Phys.Chem. A, 103 (1999) 10969.

  27. Properties of Au2 cluster and bulk Au (in eV) NO2/Au2

  28. B3LYP calculations of NO2Au2 • NO2 (2A1) + Au2 (1g)  NO2Au2 (2A1) • NO2 (2A1) + Au2 (3u)  NO2Au2 (2B2)

  29. More Cluster Models: Au7 and Au12 • Results omitted from here

  30. 3.4.2 Simple cluster model for ionic solids How to cut out a cluster? • Three Principles: Neutrality, Stoichiometry and Coordination Principles. • Coordination number principle: 1) fewest dangling bonds at the edge of a cut-out; 2) maintain the stronger dative bonds within the cluster. X. Lu et al., 1) Chem. Phys. Lett. 291(1998) 457; 2) Int. J. Quant. Chem. 73 (1999) 377; 3) Theor. Chem. Acc. 102(1999) 179.

  31. CO/MgO X. Lu et al., J. Phys. Chem. B, 105(2001) 10024.

  32. C2O32- Surface Species

  33. C3O42- Surface Species

  34. 3.5 Embedded Cluster Model for Ionic Solid For ionic solid, VSsrcan be replaced byVIsr: For ideally ionic solid, VIsrwould be negligible: i.e. Simple embedded cluster model

  35. 3.5.1 Simple embedded cluster model • A cut-out cluster is embedded into an array of point charges (always in formal charge) to represent the Madelung Potential of the ionic surroundings.

  36. Example 4: CO/MgO(100) and NiO(100) • See in G. Pacchioni et al. Surf. Sci. 255 (1991) 344. Simple embedded cluster model for MgO(100) and NiO(100) ( Mg(Ni) +2; O: -2 )

  37. Demerits of simple embedded cluster model Most of the ionic solids are not ideally ionic. Hence, • the ionic charges are always fractional; • the short range interaction between the cut-out cluster and its surrounding is seldom negligible. Way-out: • Charge consistency • Minimize the short range interaction.

  38. Charge Consistence between the Embedded cluster and its PCC surrounding Different embedding charge Q gives different C with different charges at the in-cluster atoms. Hence charge consistence between the embedding charges and the equivalent in-cluster atoms is essential and can be readily reached.

  39. 自洽条件探讨 电荷自洽 偶极矩自洽 势自洽 电荷密度自洽 偶极矩自洽

  40. SPC Embedded Cluster Model Cutout Cluster SPC Embedding Nuetrality Principle Coordination Principle Spherical Point Charges Self-consistency of Charge Density Stoichiometry Principle X. Lu et al, J. Phys. Chem. B 103(1999) 2689.

  41. Example: SPC Cluster Models for MgO X. Lu et al., J. Phys. Chem. B, 103(1999) 3373.

  42. NxOx+12- (X=1,2) Species Formed on MgO X. Lu et al., J. Phys. Chem. B, 103(1999) 5657.

  43. 3.6 Saturated Cluster Model for Covalent Solids • Saturating the radical-like dangling bonds at the edge of the cut-outs by using suitable saturators (e.g. H or other pseudoatoms). • Widely employed in the study of covalent solid surfaces, e.g., Silicon, Diamond, Zeolite and so on. • Examples shown below include Chemical Reactions on Silicon Surfaces.

  44. Atomic arrangements of a) X(100)-21 (X= Si, Ge) and b) Si(111)-77 reconstructed surfaces. buckling

  45. Reconstruction of X(100) X= C, Si, Ge Three models describing the bonding within a buckled X=X dimer In the solid state, each atom adopts sp3 hybridization and tetrahedral coordination.

  46. Two widely used cluster models for X(100)-2x1 surface • X9H12 X15H16

  47. [2+2] addition of Alkene on Si(100) • Possible pathways

  48. Controversy on the Mechanism • p-complex mechanism: • FTIR spectra of dideuterioethylene/Si(100) suggested that the adsorption is stereospecific and stereoselective. (Liu et al., J. Am. Chem. Soc., 1997, 119, 7593.) • Radical mechanism: • STM images of 2-butene/Si(100) indicates the adsorption is not stereospecific, thought with a high stereoselectivity of 98%. (Lopinski et al., J. Am. Chem. Soc., 2000, 122, 3548.)

  49. X. Lu, J. Am. Chem. Soc. 2003, 125, 6384

  50. C4H4X(X=S,O) on Si(100)-2x1 surface X. Lu et al, J. Phys. Chem. B, 105(2001) 10069.

More Related