1 / 60

HERMES: status and selected recent results

HERMES: status and selected recent results. Workshop on Hadron Structure and Spectroscopy Paris, 1-3 March 2004 K. Rith.  The quark helicity distributions  Transversity  The Pentaquark  +  DVCS  The tensor asymmetry A T and structure function b 1 d.

percy
Télécharger la présentation

HERMES: status and selected recent results

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HERMES: status and selected recent results Workshop on Hadron Structure and Spectroscopy Paris, 1-3 March 2004 K. Rith  The quarkhelicity distributions  Transversity  The Pentaquark +  DVCS  The tensor asymmetryATand structure functionb1d

  2. TheHERMESSpectrometer

  3. TheHERMESSpectrometer

  4. The HERMES internal polarised atomic gas-target

  5. TheHERMES dual-radiator RICH Silica aerogel: n = 1.03, thresh = 4.2 C4F10: n = 1,0005, thresh = 32 1 0.5 0 PK Pp P 0.8 0.5 0 PKK PK PpK 0.8 0.5 0 Pp PKp Ppp 5 10 15 5 10 15 5 10 15 P (GeV)

  6. Quark helicity distributions, semi-inclusive asymmetries =E - E‘ z = Eh/ Leading hadron originates with large probability from struck quark D(z):= Fragmentation function

  7. Semi-inclusive asymmetries-1 In leading order: P.L. B 464 (1999) 123 zq2q(x)Dqh(z) A1h(x,z) = zq2q(x)Dqh(z) zq2q(x)Dqh(z) q(x) = zq‘2q‘(x)Dq‘h(z)q(x) Quark-‘Purity‘ Phq Different targets and hadrons h: Solve linear system for Q with A = (A1,p, A1,d, A1,p, A1,d, A1,pK ) A = PQ

  8. Semi-inclusive asymmetries from the Deuteron ,K, p asymmetries identified with RICH PionsKaons P.R.L.92 (2004) 012005  Statistics sufficient for 5-parameter-fit Q(x) = (u(x)/u(x), d(x)/d(x), u(x)/u(x), d(x)/d(x), s(x)/s(x) )

  9. Purities (Probability that observed hadron originates from quark of type f) Kaons have about 10% sensitivity to the strange sea  Adequate degree of orthogonality: Shaded bands: systematic uncertainties

  10. Extracted quark helicitydistributions P.R.L.92 (2004) 012005 u > d ? The HERMES data are consistent with flavour symmetry of spin-dependent sea  d(x) - 0.4 u(x) (!?) What is the dynamics behind this?? Data with much higher statistical accuracy urgently needed s < 0 ? x

  11. Transverse quark polarisation ,‘Transversity‘ h1 Complete description of nucleon in leading order QCD: 3 distribution functions  f1 = Quark momenta,  q q   g1 = - longitudinal quark spin, , q   5q HERMES1995-2000  h1 = - transverse quark spin, , q 5 q HERMES2002.....  h1 is chiral odd, can only be measured in conjunction with other chiral odd distribution (pol. Drell-Yan) or fragmentation function (SIDIS) See reviews by P. Mulders and P. Ratcliffe tomorrow

  12. Single Spin Asymmetries(SSA) ep(d)e‘hX N+() -N-() AUL() = N+() +N-() U: unpol. e-beam L: long. pol. Target Fit sin() to asymmetries AULsin() transverse spin component: ST sin  (15% - 20%)

  13. SSA from longitudinally polarized target Deuteron Proton P.L. B 562 (2003) 182 + P.R. D 64 (2001) 097101. o o + - - K+ - + 0  - +  0 2.4 M DIS 8.9 M DIS

  14. AULsin() from longitudinally polarized target + Deuteron Proton o - K+

  15. AULsin() from longitudinally polarized target + AULsin  SL(M/Q) za2 x [hLa(x) H1a(z) - x h1La(x) Ha(z)/z + ..] - ST za2 x h1a(x) H1a(z) SL >> ST Collins fragmentation function o Theory predictions seem to explain the data well A.V. Efremov et al., Eur. Phys. J. C 24 (2002) 47 B. Ma et al., P.R. D66 (2002) 094001 but contain a lot of assumptions: magnitude of H1/D1 4 ...12% only part of Twist-3 contribution taken into account no Sivers contribution taken into account - K+

  16. Azimuthal asymmetries:CollinsvsSiverseffect 2 different possible sources for azimuthal asymmetry:  product of chiral-odd transversity distribution h1(x) and chiral-odd fragmentation function H1(z)(Collins)  product of naive time-reversal odd distribution function f1T and familiar unpolarised fragmentation function D1(z) (Sivers) (requires orbital angular momentum of quarks) Longitudinally polarised target: Collins and Sivers effect indistinguishable Transversely polarised target: 2 azimuthal angles, Collins andSivers effect distinguishable AUTsin( + s ) AUTsin( - s )

  17. Data taking with transverse target polarisation Transverse target magnet installed end of 2000  Since then: rather unsatisfactory performance of HERA 2002: 600 k DIS-events with polarised H-target (present analysis) 2003: 450 k Dis events 2004: > 300 k DIS events (until now) (2000 > 9 M DIS events from pol. D-target)  We still are hoping for substantial improvements  Possibly continuation until summer 2005

  18. First measurement of transverse asymmetry - H target „Collins“ moments „Sivers“ moments

  19. ph/M-weighted azimuthal asymmetries „Collins“ moments „Sivers“ moments

  20. Interpretation of transverse asymmetries  Sivers function nonzero  orbital angular momentum Sivers flavor separation possible  Collins asymmetries show an unexpected pattern Expect A+  Ao  0 and A -  0 and smaller in magnitude HERMES data for AULCollins show A+  0 but Ao  A-  0 and larger in magnitude !  Interpretation: forthcoming paper  Extraction of transversity distributions underway

  21. HERMEScontribution to thePentaquark story u d s u d Theoretical motivation and experimental status: see reviews by M. Polyakov and M. Ostrick tomorrow

  22. Exotic Hadrons All until now observed Hadrons are (qq)- oder (qqq)-states But Model predictions do very often not agree with measured masses Many ‚missing‘ resonances QCD allows additional „exotic“ hadrons: Glueballs(gg) Hybrid states(qqg) Multiquark mesons(qqqq) Multiquark baryons, eg. Pentaquark(qqqqq) Di-baryons[(qqq)(qqq)] Again and again there were announcements of the discovery of such states. None did survive so far

  23. Theoretical prediction for 5-quark states [qqqqq + ‚sea‘] Bag models [R. Jaffe (1977), J.J De Swart (1980) et al.] Skyrme model [M. Praszalowicz (1987) et al.] Prediction: Lightest 5-q state has M = 1530 MeV Baryon-meson states [H.J. Lipkin (1987) et al.] Chiral Soliton Model[D. Diakonov, V. Petrov, M. Polyakov(1997) et al.] Excitement of chiral field in baryon: additional qq-pair Reproduces mass splittings in baryon-octet and decuplet within <1% Prediction: New anti-decuplet with + (uudds), M = 1530 MeV, positive parity, width < 15 MeV Diquark-pair model [R.L. Jaffe, F. Wilzcek (2003)] Strongly correlated diquark-pairs plus antiquark: ([qiqj]2q)

  24. 5-Quark states in the SM D. Diakonov,V. Petrov and M. Polyakov, Z. Phys. A 359 (1997) 305 S uud ds Prediction +(1530) 1 I3 sdu.. duu(dd+ss) N(1710) -1 1 *0 180 MeV sdd.. sdu.. suu(dd+ss) (1890) -1 *- *0 3/2(2070) ssu.. ssd (uu+dd) ssd du ssu ud

  25. Experimental evidence for Q+ (1530) Last year: after 30 years of futile search, sudden explosion of experimental evidence Experiments Resultats Mass Width Significance (MeV) (Mev) (s) LEPS DIANA CLAS SAPHIR ITEP (n’s) 1540105 G  25 4.61 15392”few”G 8 4.4 154225FWHM 21 5.30.5 154042G  25 4.8 15335 G  29 6.7 World average 15392.5 Prediction 1530 G < 15I=0 S=+1 JP=½+

  26. Momentum range: p (1-15 GeV), p (4-9 GeV) Cuts: data quality, distance between p+ - p-,Ks - p, Q+-beam Ks: decay length > 7 cm, 485MeV< M(Ks) < 509 MeV L(1116) excluded: reject event if M(p-p) within 1s of nominal L mass Experimental Evidence from HERMES e D -> pK0sX -> p+ - X Ee = 27.6 GeV, Target: pol/ unpol D Reaction:

  27. KS -> + - optimizedyield of Kspeak in M(p+p-) while minimizing background NO constraints optimized to increase significance of signal in final M(pp+p-)

  28. Detector Calibration with KS, , , -, * Particle observed mass PDG mass [MeV] [MeV] KS +- 496.8  0.2 497.67  p- 1115.7  0.1 1115.68 - p-+ 1321.5  0.3 1321.31  0.3 * pK- 1522.7  1.9 1519.5  1.0 Excellent Proton identification by RICH: K+ and p+contamination negligible for 4GeV< P p< 9 GeV , , -, *...well identified

  29. Monte Carlo Simulation ofpKSpp+p- Input: Resonance at 1540MeV with width = 2 MeV, decay into pKs Full detector simulation Results: MassM = 1540  0.3 MeV Width = 6.2  1 MeV, FWHM = 14.6  2.4 MeV Masses are well reconstructed, apparative resolution determines width of the signal

  30. M(p+p-p) Spectrum - fit with polynomial background hep-ex/0312044 Fit: 4th-order polynomial Resonance is observed at M(p+p-p)= 1528  2.6  2.1 MeV Width:FWHM = 19.5  5  2 MeV somewhatlargerthanexp.res. Naive significance:56/144  4.7  True significance:59/16  3.7  Unbinned fit is used; result does not depend on size of bin and starting point

  31. M(p+p-p) Spectrum - efforts to reproduce background hep-ex/0312044 Mixed event background PYTHIA6 simulation (no resonances (Q+or S*+) in mass range 1.4 – 1.7 GeV) Remaining strength due to ‘known’ broad resonances ((1480), (1560), (1580), (1620), (1660), (1670)) plus new structure M(p+p-p)= 1527  2.3  2.1 MeV Width:FWHM = 22  5  2 MeV Naive significance:74/145  6.1  True significance:78/18  4.3 

  32. Naïve estimator: • neglects uncertainty in background -> overestimates sign. of peak • statistics books: stress 2nd factor • Second estimator: • gives somewhat lower value • ?? • “Realistic” estimator: • Ns are of peak from fitting function, dNs its fully correlated uncertainty • measures how far peak is away from zero in units of its own stand. dev. • all correlated uncertainties, incl. of bkg parameters, are accounted for Significance

  33. Massand width of the signal  mass FWHM NsNb naive Total signif, [MeV][MeV]in 2 in 2 sign. Ns Ns a) 1527.0  2.3  2.1 22  5  2 74 145 6.1  78  18 4.3  a‘) 1527.0  2.5  2.1 24  5  2 79 158 6.3  83  20 4.2  b) 1528.0  2.6  2.1 19  5  2 56 144 4.7  59  16 3.7  b‘) 1527.8  3.0  2.1 20  5  2 52 155 4.2  54  16 3.4  a) Fit with 4th-order polynomial b) PYTHIA6 + fit to resonances `) with invariant mass of pKs-system, M(Ks) constrained to PDG-value Experimentalwidth larger than detector resolution of 14.6  2.4 MeV

  34. World average: M(Q+)= 1536.2  2.6 MeV (taken syst. uncertainty for DIANA and ITEP: 3 MeV) HERMESresult for mass 2.1 s below world average Comparison with other Experiments

  35. Isosinglet vs isotensor Clear *(1520) signal inpK-mass spectrum cross section estimate 62  11 (stat) nb No peak structure inpK+mass spectrum, Gaussian + pol. fitgive 0 counts with 91%CL No indication ofQ++, rule out isotensor, observed state is very likely isosinglet

  36. Pentaquark summary A narrow exotic resonance has been observed by the HERMES experiment in quasireal photoproduction via eD KspX Mass:M = 1528  2.6  2.1 MeV, this is by 2.1 s below world average Width:FWHM = 19  5  2 MeV, this is somewhat larger than the experimental resolution of the spectrometer Preferably this is an isosingletstate as no peak structure is seen in the pK+ mass spectrum A production cross section of (100 - 220 nb)  25% is estimated

  37. Orbital angular momentum contributions Lq,g to nucleonspin ? ½ = ½  + Lzq + G + Lzg 0,10 > 0,6 ? ‘No one knows how to measure it‘ (R. Jaffe) one hope: Exclusive processes, Generalised parton distributions (GPDs) X.Ji:Jq= ½  + Lzq = lim ½ dx x [H(x,,t) + E(x,,t)] t  0 * *  , K,  ,,      p p p p DVCS

  38. DVCS Example: DVCS (Interference of DVCS and Bethe-Heitler) Azimuthal asymmetries: LU beam polarisation, Cbeam charge, ULtarget polarisation Beam Polar. Beam Charge P.R.L. 87 (2001) 182001

  39. DVCS - deuteron target Target Polar. Deuteron is Spin-1 9 GPDs Beam Polar.

  40. DVCS - nuclear targets Neon is Spin-0 1 GPD

  41. DVCS Expected accuracies for 2 years of data taking HERMES Recoil-Detector Ready for installation this summer 2 years of data taking

  42. AT, b1and b2- deuteron  Deuteron is spin-1 target V = Pz= p+ - p- , Pz1 T = Pzz= p+ + p- -2p0 , -2 Pz z +1  More structure functions meas = u [1 + PbVA + ½TAT] A  g1/F1 [ 1 + ½ TAT] AT  2/3 b1/F1 Proton Deuteron F1½ zq2 [q+ + q-] 1/3  zq2 [q+ + q-+ q0] F2 2xF1 2xF1 g1½ zq2 [q+ - q-] ½ zq2 [q+ - q-] b1½ zq2 [2q0 - (q+ + q-)] b2 2xb1

  43. AT, b1and b2- deuteron First measurement, only possible with atomic gas target Model: K. Bora, R.L. Jaffe, PRD 57 (1998) 6906

  44. AT, b1and b2- deuteron  Deuteron is spin-1 target AT  10-2 little impact on det. of g1 b1dis sizeable ! and interesting by itself related to - nuclear binding - D-stateadmixture - diffractive nuclear shadowing - nuclear excess pions inD - VMD+ double scattering - - - See e.g.: - P. Hoodboy et al., N.P. B312 (89) 571 - R.L. Jaffe & A. Manohar N.P. B321 (89) 343 - X. Artru & M. Mekhfi, Z. Phys. C45 (90) 669 - N.N. Nikolaec & W. Schäfer, P.L. B398 (97) 245 - J. Edelmann et al., Z. Phys. A357 (97) 129, P.R. C57 (98) 3392 - K. Bora & R.L. Jaffe, P.R. D57 (98) 6906 - -

  45. Further results - Outlook Many more results: hadronisation in nuclei(P.L. B 577 (2003) 37- 46)  DIS on nuclear targets (P.L. B567 (2003) 339-346)  quark hadron duality in A1p(P.R.L. 90 (2003) 092002)  Q2 dependence of GDH-integral (Eur. Phys. J. C26 (2003) 527-538) DSAfor exclusive VM production (Eur. Phys. J. C29 (2003) 171-179) Nuclear attenuation of coherent and incoherent ‘s (coherence length, colour transparency) (P.R.L. 90 (2003) 052501) pion multiplicities and fragmentation functions longitudinal and transverse  polarisation vector meson production hyperon production  

  46. Hadronisation in nuclei  Hadronmultiplicity ratios for different nuclei contain information about the space-time development of the hadronisation process hadron formation time q h nuclear medium dependent fragmentation functions D(z,A)  induced energy loss by multiple scattering and gluon radiation 

  47. Hadronisation in nuclei Data for N and Kr from 12 GeV and 27.5 GeV  Strong reduction of hadron multiplicities for low   Attenuation goes away with increasing (when hadrons are formed outside of the nucleus)  Attenuation stronger for h-than for h+  Attenuation much stronger for Krypton than for Nitrogen: ratio  A2/3 See also: Eur. Phys. J. C 20 (2001) 479

  48. Hadronisation in nuclei P.L. B 577 (2003) 37

  49. Hadronisation in nuclei P.L. B 577 (2003) 37

  50. Hadronisation in nuclei P.L. B 577 (2003) 37 Cronin effect

More Related