1 / 31

Lichtor, P. A.; Miller, S. J. Nature Chem. 2012 , ASAP.

Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation Guillaume Pelletier Literature meeting - November 20 th 2012. Lichtor, P. A.; Miller, S. J. Nature Chem. 2012 , ASAP. Analysis of biosynthetic patways reveals functional group selectivity.

pravat
Télécharger la présentation

Lichtor, P. A.; Miller, S. J. Nature Chem. 2012 , ASAP.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidationGuillaume Pelletier Literature meeting - November 20th 2012 Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  2. Analysis of biosynthetic patways reveals functional group selectivity For a review, see: Clardy, J.; Walsh, C. Nature 2004, 432, 829-837. Walker, K.; Croteau, R. Phytochemistry2001, 58, 1-7. Mendoza, A.; Ishihara, Y.; Baran, P. S. Nature Chem. 2012, 4, 21-25.

  3. Analysis of biosyntheticpatwaysrevealsfunctional group selectivity For a review, see: Clardy, J.; Walsh, C. Nature 2004, 432, 829-837. Novak, B. H.; Hudlicky, T.; Reed, J. W.; Mulzer, J.; Trauner, D. Curr. Org. Chem. 2000, 4, 343-362. Calderon, S. N. et al. J. Med. Chem. 1997, 40, 695.

  4. Analysis of biosyntheticpatwaysrevealsfunctional group selectivity For a review, see: Clardy, J.; Walsh, C. Nature 2004, 432, 829-837. Novak, B. H.; Hudlicky, T.; Reed, J. W.; Mulzer, J.; Trauner, D. Curr. Org. Chem. 2000, 4, 343-362. Calderon, S. N. et al. J. Med. Chem. 1997, 40, 695.

  5. Enzyme-mediatedoxidationdoesprecludegenerality… Van Tamelen, E. E.; Heys, R. J. J. Am. Chem. Soc. 1975, 97, 1252-1253.

  6. Small syntheticmoleculesmeetssome of these challenges Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2005, 44, 4389-4391. Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 5886-5895.

  7. Small syntheticmoleculesmeetssome of these challenges Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2005, 44, 4389-4391. Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 5886-5895.

  8. Small syntheticmoleculesmeetssome of these challenges Barlan, A. U.; Basak, A.; Yamamoto, H. Angew. Chem., Int. Ed. 2006, 45, 5849-5852. Chang, S.; Lee, N. H.; Jacobsen, E. N. J. Org. Chem. 1993, 58, 6939-6941.

  9. Small syntheticmoleculesmeetssome of these challenges Barlan, A. U.; Basak, A.; Yamamoto, H. Angew. Chem., Int. Ed. 2006, 45, 5849-5852. Chang, S.; Lee, N. H.; Jacobsen, E. N. J. Org. Chem. 1993, 58, 6939-6941.

  10. Template-directedinternalepoxidation of polyenes Gnanadesikan, V.; Corey, E. J. J. Am. Chem. Soc. 2008, 130, 8089-8093.

  11. The goal of the present study Sharpless Epoxidation Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  12. Literature precedents on small peptide mediated epoxidation Peris, G.; Jakobsche, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 8710-8711. Kolundzic, F.; Noshi, M. N.; Tjandra, M.; Movassaghi, M.; Miller, S. J. J. Am. Chem. Soc. 2011, 133, 9104-9111.

  13. Proposedcatalytic cycle for the asymmetricepoxidation Peris, G.; Jakobsche, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 8710-8711. Kolundzic, F.; Noshi, M. N.; Tjandra, M.; Movassaghi, M.; Miller, S. J. J. Am. Chem. Soc. 2011, 133, 9104-9111.

  14. First screening of catalysts • With initial peptide catalyst screening, the authors chose to run the reactions at low • conversions in order to allow a preleminary assessment of catalyst krel Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  15. Methodology employed for catalyst design • The one-bead-one-compound concept is based on the fact that combinatorial beads • beads prepared from the « split-pool synthesis » contain single beads displaying one • type of compounds although there may be 1013 copies on a 100 μm bead Lam, K. S.; Lebl, M.; Krchňák, V. Chem. Rev. 1997, 97, 411-448. Furka, A.; Sebestyen, F.; Asgedom. M.; Dibo, G. Int. J. Pept. Protein Res. 1991, 37, 487-493.

  16. One-bead-one-compound and split-pool synthesis Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. Nature1991, 354, 82-84.

  17. One-bead-one-compound and split-pool synthesis Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. Nature1991, 354, 82-84.

  18. Initial screening (withparallel peptide synthesis) Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  19. Initial screening (withparallel peptide synthesis) Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP. Lichtor, P. A.; Miller, S. J. ACS Comb. Sci. 2011, 13, 321-326.

  20. Split-pool optimization and synthesis of a large OBOC library (iterativeapproach) • The resulting library possess a theorical size of about 3000 unique peptide sequences • (for the first directed library) Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP. Lichtor, P. A.; Miller, S. J. ACS Comb. Sci. 2011, 13, 321-326.

  21. OBOC libraryresultstowardsepoxidation of farnesol Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  22. Identification of peptides via sequencing and HPLC/MALDI-QToFanalysis Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  23. Resynthesis and « in solution » trials with hits Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  24. Resynthesis and « in solution » trials with hits Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  25. Substrate scope withoptimized9bcatalyst Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  26. Biased 2nd OBOC directedat 6,7-selectiveepoxidation Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  27. Resynthesis and « in solution » trials with hits Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  28. 2,3-Selectivity and 6,7-Selectivityishydroxydriven in epoxidation Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  29. Validation of both9b and 12dcatalystwithgeranylgeraniol in solution Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  30. Conclusions • Enzymes mediated approches are most often not general to a series of substrates. • The application of diversity-based approaches may prove fruitful and may also offer analogy to the directed evolution of strategies employed by natural an bioengineered enzymatic systems. • Peptide 9b and 12d found by one-bead-one-compound library screening are operating via a hydroxyl-mediated mechanism. • They offer comparable selectivity to the well-known Sharpless epoxidation conditions and are amenable to new selectivity pattern. Lichtor, P. A.; Miller, S. J. Nature Chem. 2012, ASAP.

  31. Future aspects of peptide site-selectivity Fowler, B. S.; Laemmerhold, K. M.; Miller, S. J. J. Am. Chem. Soc. 2012, 134, 9755-9761. Pathak, T. P.; Miller, S. J. J. Am. Chem. Soc. 2012, 134, 6120-6123.

More Related