1 / 32

Di-electron mass spectrum in 2 AGeV 12 C+ 12 C measured with HADES

Di-electron mass spectrum in 2 AGeV 12 C+ 12 C measured with HADES. Romain Holzmann, GSI Darmstadt for the HADES collaboration. Introduction the case of moderate beam energies a reminder: DLS The HADES experiment setup data analysis First results & comparison with theory.

rachel
Télécharger la présentation

Di-electron mass spectrum in 2 AGeV 12 C+ 12 C measured with HADES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Di-electron mass spectrum in 2 AGeV 12C+12C measured with HADES Romain Holzmann, GSI Darmstadt for the HADES collaboration • Introduction • the case of moderate beam energies • a reminder: DLS • The HADES experiment • setup • data analysis • First results & comparison with theory Quark Matter 2005

  2. S. Bass et al. IQMD r/r0 15 fm/c The case of moderate beam energies • Final state of HI collision @ 1-2 AGeV (√sNN = 2.3-2.7 GeV) • up to 200 charged particles • up to 10 % pions →baryon dominated • very little strangeness • Increase of baryon density • Dt (3 > r/r0 > 2) = 15 fm/c • fireball comparativelylong-lived … • … at moderate densities and moderate T • Production of vector mesons below threshold • co-operative processes (multi-step) • production confined to high-density phase • one vector meson decaying into a lepton pair per 1-10 million reactions!!! QM2005 Romain Holzmann, GSI

  3. Giessen BUU Data: R.J. Porter et al.: PRL 79 (1997) 1229 BUU model: E.L. Bratkovskaya et al.: NP A634 (1998) 168 transport +in-medium spectral functions Enhanced dilepton yields from DLS  DLS puzzle!? DLS at the Bevalac (1987-1995) QM2005 Romain Holzmann, GSI

  4. RQMD description of the DLS data Calculation: K. Shekhter, C. Fuchs et al. (Tübingen) Phys. Rev. C68(2003) 014904 • collisional broadening ofω ( Г(ω) = 200 MeV) • extended VDM + decoherence • BR scaling of VM QM2005 Romain Holzmann, GSI

  5. Beams of: • Pions • Protons • Nuclei Operated by a collaboration ofmore than 100 physicists fromCyprus, Czech Rep., France, Germany, Italy, Poland, Portugal, Russia, Slovakia, Spain High Acceptance DiElectron Spectrometer Use di-electron pairs to investigate vector meson production (r, w, f). • Spectrometer with • high geometric acceptance • high invariant mass resolution • high rate capability • Utilizes dedicated LVL2 trigger to select events before storing. • Installed at the SIS18 at GSI. Project launched in late 1994,6 years R&D and construction. First production run in 2002 QM2005 Romain Holzmann, GSI

  6. The spectrometer design • Geometry • Full azimuth, polar angles 18o - 85o (y = 0 – 2) • Segmented solid targets or LH2 target • Pair acceptance  0.35 • Particle identification • RICH: CsI solid photo cathode, C4F10 radiator, No  80, pion suppression  104 • TOF: 384 scintillator rods • TOFino: 24 scintillator paddles temporary solution, RPC in future • Pre-Shower: 18 pad chambers & lead converters) • Momentum measurement • ILSE: superconducting toroid with Br = 0.36 Tm • MDC: 24multi-wire drift chambers, single-cell resolution  100 mm 1 m QM2005 Romain Holzmann, GSI

  7. HADES experimental runs • November 2001: commissioning run target = 5% • C+C 2 AGeV LVL1 triggered events (Mch.>3) : 45 Mevents • C+C 1 AGeV LVL1 trigger : 7.3 Mevents • full coverage with inner MDC chambers (Dp/p  10% at 0.7 GeV/c) • November 2002: C+C 2 AGeV, commissioning and physics runs • target= 2 x 2.5%, 56% LVL1 trigger + 44% LVL2 trigger 220 Mevents • 6 outer drift chambers (MDC) in 4 sectors • October 2003: p+p commissioning run (1 GeV, 2 GeV) • full coverage with outer MDC III (4 MDC IV) (Dp/p  1.5 % at 0.7 GeV/c) • February 2004: p+p 2GeV production run • target 5 cm l-H2 400 Mevents • August 2004: C+C 1AGeV production run • 3x1.5 % target, 56% LVL1 trigger + 44% LVL2 trigger650 Mevents QM2005 Romain Holzmann, GSI

  8. linear z axis ! log. z axis ! yield [arb. units] Electron/positron identification Events with lepton multiplicity  1 in LVL1 triggered events: only 1.2 % ! • Matched RICH and META signals (LVL2) • + matching with fully reconstructed tracks cut on b QM2005 Romain Holzmann, GSI

  9. Simulation e- e+ qp [MeV/c] Singles efficiencies and purities after PID and matching Low-resolution tracking mode used (σM/M ≈ 10%) Efficiency: 80% Purity: 85% Contamination: • lepton fakes 15% (mostly closed pairs) • hadrons <3% QM2005 Romain Holzmann, GSI

  10. <9o C0 C1 C2 C3 C0 C1 C2 C3 Pair clean-up strategies Relative suppression TOF/Shower Mag field Pair rejection cuts: • C0 = pairing • C1 = C0 + double hit rejection Remove tracks with ambiguous detector hit(s) • C2 = C1 + opening angle <9o Remove both tracks from sample • C3 = C2 + close pair cand. rejection Remove track if a non-fitted track candidate is within 10o MDC I-II RICH C1 C2 C3 Relative suppression QM2005 Romain Holzmann, GSI

  11. Data Nov02 Signal / CB Counts /MeV/c2 / coll. Ne+e- Signal CB M [MeV/c2] M [MeV/c2] Combinatorial background subtraction • Combinatorial background (CB): • from like-sign pairs • CB+-=Ne+e++Ne-e- or CB = • Signal: • S+-= Ne+e- -CB+- QM2005 Romain Holzmann, GSI

  12. π0 • C+C data • cocktail generator η Tracking in low-resolution mode! Raw 2 AGeV C+C e+e- mass spectrum No efficiency / acceptance correction! Normalized to the pion multiplicity. signal < 140 MeV/c2: 17600 counts signal > 140 MeV/c2: 1420 counts • Systematic errors: • PID cuts • pair clean-up • normalization • +40%/-30% QM2005 Romain Holzmann, GSI

  13. within acceptance systematic errors: +50%/-40% Efficiency-corrected mass spectrum pair opening angle >9o, pt > 100 MeV/c • Efficiency correction applied • to pair data (e- and e+ legs): • → accounts for • detector inefficiencies • reconstruction inefficiencies • Compared with a cocktail • based on known or mt-scaled • meson multiplicities and their • vacuum decay properties • within HADES geometric acceptance • and mass resolution (σm(ω) = 10%). QM2005 Romain Holzmann, GSI

  14. pt spectra with mass cuts pair opening angle >9o, pt > 100 MeV/c efficiency-corrected data only statistical errors are shown QM2005 Romain Holzmann, GSI

  15. HSD v2.5 of May ´05, E. Bratkovskaya et al. Comparison with transport theory (I) • Giessen HSD • Tübingen RQMD • Frankfurt UrQMD • etc. Comparison of efficiency-corrected data with theory folded with HADES filter: • geometrical acceptance • momentum resolution pair opening angle >9o, pt > 100 MeV/c QM2005 Romain Holzmann, GSI

  16. Comparison with transport theory (II) RQMD calculation done by D. Cozma and C. Fuchs in-medium calculation vacuum calculation pair opening angle >9o pt > 100 MeV/c resolution smeared • collisional broadening • extended VDM + decoherence • Brown-Rho scaling of VMs See Phys. Rev. C68 (2003) 014904 for details. QM2005 Romain Holzmann, GSI

  17. Conclusions & outlook • HADES is up and running • First physics results obtained in low-resolution mode on C+C • Final 2 AGeV C+C spectra after • full correction for reconstruction efficiencies • investigation of systematic errors • Ongoing analysis of 1 AGeV C+C data  direct comparison with DLS • Ongoing analysis of pp data  exp. check of η reconstruction eff. • Scheduled physics runs • Ca+Ca at 1 and 2 AGeV (Sep. 2005) • proton, deuteron and pion beams (2006) • Completion of outer tracking system (end 2005)  full hi-res tracking • Upgrade of TOF subsystem with RPC (2007)  Ni+Ni & Au+Au runs • Feasibility studies for HADES operation at FAIR  2-8 AGeV runs QM2005 Romain Holzmann, GSI

  18. The people behind it G.Agakishiev9, C.Agodi2, A.Balanda5, R.Bassini10, G.Bellia2,3, D.Belver19, J.Bielcik6, A.Blanco4, M.Böhmer14, C.Boiano10, A.Bortolotti10, J.Boyard16, S.Brambilla10, P.Braun-Munzinger6, P.Cabanelas19, S.Chernenko7, T.Christ14, R.Coniglione2, M.Dahlinger6, J.Díaz20, R.Djeridi9, F.Dohrmann18, I.Durán19, T.Eberl14, W.Enghardt18, L.Fabbietti14, O.Fateev7, P.Finocchiaro2, P.Fonte4, J.Friese14, I.Fröhlich9, J.Garzón19, R.Gernhäuser14, M.Golubeva12, D.González-Díaz19, E.Grosse18, F.Guber12, T.Heinz6, T.Hennino16, S.Hlavac1, J.Hoffmann6, R.Holzmann6, A.Ierusalimov7, I.Iori10,11, A.Ivashkin12, M.Jaskula5, M.Jurkovic14, M.Kajetanowicz5, B.Kämpfer18, K.Kanaki18, T.Karavicheva12, D.Kirschner9, I.Koenig6, W.Koenig6, B.Kolb6, U.Kopf6, R.Kotte18, J.Kotulic-Bunta1, R.Krücken14, A.Kugler17, W.Kühn9, R.Kulessa5, S.Lang6, J.Lehnert9, L.Maier14, P.Maier-Komor14, C.Maiolino2, J.Marín19, J.Markert8, V.Metag9, N.Montes19, E.Moriniere16, J.Mousa15, M.Münch6, C.Müntz8, L.Naumann18, R.Novotny9, J.Novotny17, W.Ott6, J.Otwinowski5, Y.Pachmayer8, V.Pechenov9, T.Pérez9, J.Pietraszko6, J.Pinhao4, R.Pleskac17, V.Pospísil17, W.Przygoda5, A.Pullia10,11, N.Rabin13, B.Ramstein16, S.Riboldi10, J.Ritman9, P.Rosier16, M.Roy-Stephan16, A.Rustamov6, A.Sadovsky18, B.Sailer14, P.Salabura5, P.Sapienza2, A.Schmah6, W.Schön6, C.Schroeder6, E.Schwab6, P.Senger6, R.Simon6, V.Smolyankin13, L.Smykov7, S.Spataro2, B.Spruck9, H.Stroebele8, J.Stroth8,6, C.Sturm6, M.Sudol8,6, V.Tiflov12, P.Tlusty17, A.Toia9, M.Traxler6, H.Tsertos15, I.Turzo1, V.Wagner17, W.Walus5, C.Willmott19, S.Winkler14, M.Wisniowski5, T.Wojcik5, J.Wüstenfeld8, Y.Zanevsky7, P.Zumbruch6 1)Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia 2)Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy 3)Dipartimento di Fisica e Astronomia, Università di Catania, 95125, Catania, Italy 4)LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Departamento de Física da Universidade de Coimbra, 3004-516 Coimbra, PORTUGAL. 5)Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30059 Cracow, Poland 6)Gesellschaft für Schwerionenforschung mbH, 64291 Darmstadt, Germany 7)Joint Institute of Nuclear Research, 141980 Dubna, Russia 8)Institut für Kernphysik, Johann Wolfgang Goethe-Universität, 60486 Frankfurt, Germany 9)II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany 10)Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy 11)Dipartimento di Fisica, Università di Milano, 20133 Milano, Italy 12)Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia 13)Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia 14)Physik Department E12, Technische Universität München, 85748 Garching, Germany 15)Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus 16)Institut de Physique Nucléaire d'Orsay, CNRS/IN2P3, 91406 Orsay Cedex, France 17)Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic 18)Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, PF 510119, 01314 Dresden, Germany 19)Departamento de Física de Partículas. University of Santiago de Compostela. 15782 Santiago de Compostela, Spain 20)Instituto de Física Corpuscular, Universidad de Valencia-CSIC,46971-Valencia, Spain GSI QM2005 Romain Holzmann, GSI

  19. Cavalry to the rescue! QM2005 Romain Holzmann, GSI

  20. Momentum resolution: 2,3,4 MDC planes Nov'02 present anal. Resolution [%] momentum [GeV/c] QM2005 Romain Holzmann, GSI

  21. HADES geometrical acceptance Schicker et al., NIM A380 (1996) 586 Rapidity: y = 0.2 – 1.7 (DLS had 0.7 – 1.6) For comparison: y1/2 = 0.68 @ 1 AGeV y1/2 = 0.91 @ 2 AGeV QM2005 Romain Holzmann, GSI

  22. Event vertex resolution Segmented C target: 2 x 2.5%, 2 cm apart σz < 5 mm QM2005 Romain Holzmann, GSI

  23. Scaled down by 9.2 ! LVL2 LVL1 Yield /event [a.u] e+e->40 Me+e- [MeV/c2] On-line/off-line comparison • Trigger condition used in November 2002 run: • At least one good electron candidate • Ring matched with META hit • Data rate reduced by 92 % • Pair enhancement by factor of  9 • Single lepton efficiency of IPUs + matching  62% (pairs 82%) No bias on data ! QM2005 Romain Holzmann, GSI

  24. Multiplicity "Temperature" HADES TAPS KaoS Charged pions (C+C @ 2 AGeV) Data in good agreement with TAPS/KaoS results! two temperature fit QM2005 Romain Holzmann, GSI

  25. K0 π+π-reconstruction (C+C @ 2 AGeV) 2000 kaons found in 45 million events Peter Zumbruch ,GSI QM2005 Romain Holzmann, GSI

  26. Meson multiplicity systematics • Data taken from: • TAPS • KaoS • Bevalac exp. QM2005 Romain Holzmann, GSI

  27. DLS excess yields • DLS experiment observed large excess of di-electrons when compared to known sources • pion, eta Dalitz decays • Effect much stronger than at SPS energies • Visible also in light-ion induced reactions • No conclusive theoretical explanation (yet) • Experimental problem or new physics ?? QM2005 Romain Holzmann, GSI

  28. General dilepton excess in DLS data! Theory: Frankfurt UrQMD Ernst et al. PRC 58 Overall yield excess in 0.2-0.6 MeV mass region!

  29. A reminder: the DLS pp data Data: Wilson et al. PRC 57 (1997) 1865 Theory (folded with the DLS response): C. Ernst et al. PRC 58 (1998) 447  Fair agreement of total yields

  30. Real trouble starts with pd data! Data: DLS Theory: Ernst et al. PRC 58 (1998) 447 • What's different? • Fermi momentum • correlations • pn collisions

  31. PreShower RICH Magnet HADESin pictures RICH +MDC I QM2005 Romain Holzmann, GSI

  32. v/c e- e+ For each sector ”Kick”  [°] p p*q [MeV/c] momentum vs. velocity (lepton ID 3) Azimuthal angle  [°] Track reconstruction „Hit matching in RICH + inner MDC“ e- + + min. bias RICH signal + tracking RICH: eff.: 96% , suppr.: 49%, purity.: 78% (lepton ID 1) Pre-Shower condition (lepton ID 2) + Calculated azimuthal deflection (Reduction of false hit combinations) QM2005 Romain Holzmann, GSI

More Related