1 / 28

GRB 多波長放射で切り開く暗黒の宇宙

GRB 多波長放射で切り開く暗黒の宇宙. GRBs for UNravelling the Dark Ages Mission. SKA. 井上進(京大理). 分子. TMT. ALMA. 金属. 再電離 (磁場). ダスト. SPICA. ASTRO-H. CTA. high-z GRB afterglows: expectations. z measurement from Ly break:. JANUS z~<13 GUNDAM z~<?. Subaru z~<20 TMT z~<40. 天文月報 102, 248 (2009).

rasia
Télécharger la présentation

GRB 多波長放射で切り開く暗黒の宇宙

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GRB多波長放射で切り開く暗黒の宇宙 GRBs for UNravelling the Dark Ages Mission SKA 井上進(京大理) 分子 TMT ALMA 金属 再電離 (磁場) ダスト SPICA ASTRO-H CTA

  2. high-z GRB afterglows: expectations z measurement from Ly break: JANUS z~<13 GUNDAM z~<? Subaru z~<20 TMT z~<40 天文月報 102, 248 (2009)

  3. z~100-10 未知との遭遇 =metal/dust-free, H2+HD-cooling Pop 3 first star epoch assume: no metal/dust, B field, CR, turbulence, DM heating 1st HII region -> IGM reionization 1st SN -> 1st metal/dust (+CR+B) 1st BH -> 1st QSO =metal/dust-cooling Pop 2 1st sun -> 1st planet, life, human! 観測ほとんど皆無 (WMAPのみ) 1st gen.はわかったとされている 2nd gen.研究に移行 Yoshida, Omukai & Hernquist 08

  4. deduced from GRB rate cosmic star formation rate from GRB rate Kistler+ 09 from HUDF JANUS/GUNDAMでよりhigh-zへ 直接観測と相補的

  5. z>7 現在のフロンティア cosmic reionization epoch When? early? late? two-epoch? How? topology? What? Pop III? Pop II? mini-QSOs? dark matter decay? So what? suppression of dwarf galaxy formation Madau 07

  6. reionization: IGM HI (+ HII) from Lyprofile z=6.295 McQuinn+ 08 Ly damping wing profile mean IGM HI + host galaxy HI + host HII 宇宙再電離 すばる、TMTで各成分を分離 よりhigh-zへ(WMAP, Planckと重なる時期)

  7. g + g→ e+ + e- e.g. TeV + 1eV (IR) 100 GeV + 10 eV (UV) UV background from gamma-ray absorption e E high-z UV背景放射:ガンマ線吸収で識別 CTA(Fermiの後継)でz~20 GRBまで観測可能 SI+ 10 MN 404, 1938 Y. Inoue, SI+, in prep. gamma-ray opacity cosmic star formation rate

  8. below Ly edge above Ly edge <13.6 eV >13.6 eV high-z UV background • does not ionize HI, weakly absorbed • reasonably uniform • important for  absorption • ionizes HI, strongly absorbed • highly non-uniform • negligible for  absorption • direct measure of UV emissivity • (indep. of escape fraction, • IGM clumping factor)

  9. kinematics D’Elia+ 09 GRB 080319B z=0.937 GRB 050904 z=6.295 metal abundances Kawai+ 06, Totani+ 06 - multiple velocity components - variable line ratio (UV pumping) 母銀河の金属組成、運動学 よりhigh-zへ VLT/UVES res. ~4 km/s @4500A - 1.9km/s @9000A

  10. GRB 090926A z=2.1071 ground D’Elia+ arXiv:1007.5357 metal abundances FeII VLT/X-shooter 0.3-2.5um R=10000 fine struc. X/H~3x10-3-10-2 SiII

  11. Campana+ 06 星生成領域スケールの組成 遠方まで観測可能? ダストの影響なし がH, Heの情報なし X-ray absorption lines/edges <-> 光赤外と相補的 EDGE/XENIA E~0.2-2 keV E~3 eV Seff~1000 cm2 z=1 GRB z=7 GRB Piro+ 07 -> more from D. Hartmann

  12. E=0.3-10 keV E=7 eV Seff=210 cm2 simulations by Bamba (see also Kawai, Yonetoku+, Kyoto conf.) ASTRO-H log NH=22 (Zsolar) Si log NH=23 S Fe Si z=1 bright aft@t=10ks 5e-10 erg/cm2/s integ. 10ks スザクとは違うのだよ、スザクとは!

  13. E=0.3-10 keV E=7 eV Seff=210 cm2 see also Kawai, Yonetoku+, Kyoto conf. ASTRO-H log NH=22 (Zsolar) z=6 bright aft@t=10ks 4e-11 erg/cm2/s integ. 10ks Fe log NH=23 z measurement for dark bursts <- JANUS alert

  14. E~0.2-2 keV E~3 eV Seff~1000 cm2 XENIA z=1 early aft@t=1ks 1e-9 erg/cm2/s integ. 1ks Mg Si log NH=22 (Zsolar) Ne S Fe O log NH=23 O

  15. E~0.2-2 keV E~3 eV Seff~1000 cm2 XENIA log NH=22 (Zsolar) Si z=6 early aft@t=1ks 5e-10 erg/cm2/s integ. 1ks log NH=23 Fe

  16. nucleosynthesis by low metal. SN/HN Kobayashi+ 06 metal abundances at low metallicity CNO: mass loss a-elements: pair-instability SN Ti, Zn: entropy in SN core -> explosion physics Mn: SN Ia contribution …

  17. electronic absorption bands Prochaska+ 09 GRB 080607 z=3.063 molecules Keck/LRIS R=1000-4000 log NHI=22.70 log NH2=21.2 log NCO=16.5 分子=星形成の原材料 よりhigh-zへ?

  18. Omukai+ 05 model collapsing zero/low-metal. protostellar clouds collapse of zero/low-metallicity star forming clouds T minimum -> fragmentation H2 dust H2+HD [Z/H]<-6: Mfrag~103MQPop 3 -3<[Z/H]<-5: Mfrag~0.1-100MQPop 2 [Z/H]crit=-5+-1

  19. Ivanchik+ arXiv:1002.2107 Q 1232+082 z=2.3377 HD molecules VLT/UVES R=45000 N(HD)/N(H2) =7.1(+3.2 -2.2)x10-5

  20. c.f. ambient H2 excited by GRB UV Draine 00, Draine & Hao 02 electronic absorption bands cold H2: 912-1110A (11.2-13.6 eV) vib. excited H2: 1110-1650 A (7.5-11.2 eV) primordial molecules similar for HD? N~1018-1020 cm-2 foreground massive star UV pumped H2 excited H2 massive star probe individual Pop III newly-born massive stars? GRB rdiss

  21. SI, Omukai & Ciardi 2007 MNRAS 380, 1715 atomic/molecular absorption lines SKA • CO (low) probe physical conditions (different J) • HD • CO (high) • [OI] ALMA probe Pop III Pop III->II transition 回転順位線 より高柱密度領域 TMTと相補的 チャレンジングだろうがやってみよう

  22. Perley+ 10 GRB 071025 z~5 dust • extinction feature • best fit with high-z • QSO extinc. curve • (Maiolino+ 04) ダスト: Pop II星形成への 遷移に本質的?TMTでよりhigh-zへ Pop III ダストの性質も?

  23. (optical depth at fragmentation) absorption by first dust pair instability SN zero-metal SN II based on first dust models of Schneider+ 06 TMT (+SPICA)でPop 3 -> Pop 2 遷移を探れる?ダストの性質も?

  24. B fields in Pop III star forming regions B~10-16-10-14 G on pc scales intergalactic/interstellar magnetic fields at high-z IGM B generation at high-z cosmic reionization fronts B~10-20-10-16 G B profile B nHI Xu+ 08 T ngas mean B vs z Gnedin+ 00 also Langer+ 05

  25. GRB “pair echos” (delayed secondary emission) probe of intergalactic magnetic fields Plaga 95 (original idea) sensitive to very weak intergalactic magnetic fields g ~TeV B~10-20-10-16 G MeV e- IR CMB e+ B g ~GeV delay CMB g MeV

  26. fix Eiso=1054 erg, z=10, Emax=10 TeV evolving echo flux B=10-15G CTA sens. assume low EBL (0.1x CF model) observationally challenging, but marginally detectable by CTA Takahashi, SI, Ichiki & Nakamura arXiv:1007.5363

  27. - large r~<100 pc - low density n~0.1 cm-3 Pop 3 HII regions - flat profile Can be probed through afterglow evolution? Whalen+ 04 also Kitayama+ 04

  28. まとめ GRBは宇宙で最も明るい多色光源 有効利用しよう 特にz>10 first star epochは未開拓 GRBで切り拓く 調べられる/られそうなこと: z 測定、星形成史、再電離史、 金属組成、運動学、分子、ダスト、磁場… 課題:Pop III GRB? その兆候は? 多波長のシナジー: SKA, ALMA, SPICA, ASTRO-H, CTA… JANUS and/or GUNDAMを上げよう

More Related