1 / 18

DEPFET Sensor – a Status Report

DEPFET Sensor – a Status Report. L. Andricek, P.Fischer, G.Lutz, R.H.Richter, M.Schumacher, M.Trimpl, J.Ulrici, N.Wermes. DEP (leted) F (ield) E (ffect) T (ransistor) operation principles DEPFET prototype run Technology and design Wafer thinning Concept, first results.

roanna-moon
Télécharger la présentation

DEPFET Sensor – a Status Report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DEPFET Sensor – a Status Report L. Andricek, P.Fischer, G.Lutz, R.H.Richter, M.Schumacher, M.Trimpl, J.Ulrici, N.Wermes • DEP(leted)F(ield)E(ffect)T(ransistor) operation principles • DEPFET prototype run • Technology and design • Wafer thinning • Concept, first results MPI Munich (HLL) and Bonn University Ladislav Andricek, MPI Halbleiterlabor

  2. radiation 55Fe-spectrum @ 300K single pixel ~1mm - - - + - + - + + - ENC = 4.8 +/- 0.1 e- DEPFET Sensor - Principle of operation (e.g.JFET) - ~300 mm Advantages: Amplification of the charge at the position of collection => no transfer loss Full bulk sensitivity Non structured thin entrance window (backside) Very low input capacitance => very low noise Ladislav Andricek, MPI Halbleiterlabor

  3. DEPFET Sensor - linear MOSFET for small pixel - MOS transistor instead of JFET A pixel size of ca. 20 x 20 µm² is achievable using 3µm minimum feature size. Ladislav Andricek, MPI Halbleiterlabor

  4. switch on row & common source readout clear internal gate DEPFET Matrix - Principle of operation - Ladislav Andricek, MPI Halbleiterlabor

  5. Pre-test diodes IBulk =100pA/cm2 -> like in old technology DEPFET Sensor- Technology Development - Self aligned double poly / double aluminium process on high ohmic n- substrate along p-channel Ladislav Andricek, MPI Halbleiterlabor

  6. DEPFET Sensor- Layout - • 2 pixels • 30 x 30 µm² • DEPFET • L = 5 µm • W = 18 µm • reduce the required read out speed by 2 doubles the number of read out channels Ladislav Andricek, MPI Halbleiterlabor

  7. N-side view with two polysilicon layers and contact openings 1 Pixel cell Drain Gate Still to do: - P-side processing - Metallization Clear Expected to be finished: Spring 2003 Clear gate Source DEPFET Sensor- prototyping/current production status - Many test arrays on a 6“ Wafer - Circular and linear DEPFETS up to 128 x 128 pixels minimum pixel size about 30 x 30 µm² - variety of special test structures Ladislav Andricek, MPI Halbleiterlabor

  8. Processing thin detectors- the Idea - Ladislav Andricek, MPI Halbleiterlabor

  9. Processing thin detectors- Wafer bonding - 10 “SOI” Wafer prepared by MPI für Microstrukturphysik, Halle ≈1 cm/sec picture from: www.mpi-halle.mpg.de Q.-Y. Tong and U. Gösele “ Semiconductor Wafer Bonding ” John Wiley & Sons, Inc. Ladislav Andricek, MPI Halbleiterlabor

  10. Processing thin detectors- anisotropic wet etching - Hydroxide etching of silicon: KOH, NaOH, … , TMAH: (CH3)4 NOH Ladislav Andricek, MPI Halbleiterlabor

  11. Processing thin detectors- first tests - Handle Wafer: n-type, 1-100 Ohm.cm, (100), thickness 283 - 297 micron Top Wafer: n-type, 1-3 kOhm.cm, (100) * BOX layer: Oxide 245 nm * wafer bonding * annealing for 4 hours at 1050 ºC to 900 ºC. * grinding and polishing of device wafer (Sico) After bonding, thinning, and polishing top layer thickness: 24 - 29 micron (3 Wafer) 36 - 38 micron (3 Wafer) 43 - 47 micron (4 Wafer) Ladislav Andricek, MPI Halbleiterlabor

  12. Processing thin detectors - first test mask / KOH etching at CiS - Processing at CiS (5 wafer): *deposition of 60nm Si3N4 masking layer on SiO2 *Dry etching of the windows, open oxide layer *KOH etching at 80 ºC *remove nitride layer 50x13 mm2 (tesla/2, one supporting bar) (50x13)/2 mm2 (3 supporting bars) 80x10.4 mm2 (80% of tesla sensor) 6.5x6.5 mm2 (50x13)/4 mm2 (7 supporting bars) drawbacks of KOH etching: 1.) poor selectivity to oxide -> nitride mask 2.) poor selectivity to Al 3.) alkali ions –> not CMOS compatible Ladislav Andricek, MPI Halbleiterlabor

  13. 26 μm 51 μm Processing thin detectors - distortions - Ladislav Andricek, MPI Halbleiterlabor

  14. good selectivity to oxide almost perfect selectivity to Al no alkali ions poorer selectivity to (111) (≈30:1) rough surface after etching (hillocks) Etch solution: 5 wt.% TMAH 1.6 wt.% dissolved silicon 0.4 wt.% (NH4)2S2O8 -> at 80 ºC forms a passivation layer on Aluminium pads: Aluminium-oxide Aluminium silcates { } Processing thin detectors - first test mask / TMAH etching at HLL - Tetra-Methyl-Ammonium-Hydroxide Ladislav Andricek, MPI Halbleiterlabor

  15. ATLAS Pixel Detector (Al on 500 nm SiO2) after 10 h at 80 ºC on ≈40 μm thick Silicon Processing thin detectors - TMAH etching at HLL/ results - etch rate (100): ≈35 μm/h etch rate of Al, wet SiO2: < 1 nm!! Ladislav Andricek, MPI Halbleiterlabor

  16. unstructured n+ on top structured p+ in bond region Device Wafer Handle Wafer structured p+ on top unstructured n+ in bond region Processing thin detectors - next steps / status - Diodes on thin silicon: * test bondability of implanted oxide *electrical performance of diodes on thin silicon * process evaluation and more mechanical test Ladislav Andricek, MPI Halbleiterlabor

  17. Processing thin detectors - next steps / status - p+ diodes on top: simplified standard technology white areas are thinned to 50 μm after processing p+ diodes in bond region Ladislav Andricek, MPI Halbleiterlabor

  18. Processing thin detectors - next steps / status - Bonded wafers (structured implant in BOX): Bonding possible, but some voids after annealing! -> improve surface condition before bonding infrared transmission pictures from MPI Halle (M. Reiche) Ladislav Andricek, MPI Halbleiterlabor

More Related