1 / 15

Unit 8 & 9 Review

Unit 8 & 9 Review. Types of Questions on Test: Multiple Choice True/False Matching Punnett Squares. Part 1 Genotype – D Phenotype – B Homozygous – F Heterozygous – E Monohybrid Cross – A Dihybrid Cross – C Part 2 7. Genetics – F 8. Heredity – G 9. Gene – A

rod
Télécharger la présentation

Unit 8 & 9 Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unit 8 & 9 Review Types of Questions on Test: Multiple Choice True/False Matching Punnett Squares

  2. Part 1 • Genotype – D • Phenotype – B • Homozygous – F • Heterozygous – E • Monohybrid Cross – A • Dihybrid Cross – C • Part 2 7. Genetics – F 8. Heredity – G 9. Gene – A 10. Diploid – B 11. Haploid – E 12. Law of segregation – D 13. Law of independent assortment – C

  3. Part 3 14. Homologous Chromosomes – C 15. Sex Chromosome – F 16. Autosome – D 17. Cross pollination – B 18. Pure strain – E 19. Allele – G 20. Dominant – A 21. Recessive – H • Review the following terms from Unit 9: • Complete Dominance – D • Incomplete Dominance – F • Codominance– I • Single Allele Trait – A • Multiple Allele Trait – G • Polygenic Trait – J • X-linked Gene – B • Sex Influenced Trait – H • Test cross – E • Linkage Group – C

  4. 11. How many genes are found on each chromosome? • Hundreds! More than one gene per chromosome 12. How many strands of DNA (chromosomes) do humans have in a diploid? • 46 chromosomes in each body cell (2 sets of 23 chromosomes) • 44 autosomes and 2 sex chromosomes (XX or XY) in every body cell 13. How many strands of DNA (chromosomes) do humans have in a haploid? • 23 chromosomes in each haploid (sex cell, gamete) • 1 set of 23 chromosomes (22 autosomes and 1 sex chromosome) 14. Give two examples of a diploid cell. • Diploid Cell – Somatic (body) cell • Skin cell, Muscle cell, Blood cell, Cheek cell 15. Give two examples of a haploid cell. • Haploid Cell – Reproductive cell (Gamete) • Sperm (male gamete, 22 autosomes & either X or Y) • Egg (female gamete, 22 autosomes & an X chromosome)

  5. 16. A person has a mutation in a diploid cell. Will this affect their offspring? • If the mutation is only in a diploid cell (skin cell, muscle cell) it WILL NOT affect the offspring • Skin cells, muscle cells, etc do not get passed down to the offspring 17. A person has a mutation in a haploid cell. Will this affect their offspring? • A mutation in a haploid cell (sperm/egg) WILL affect the offspring • When an egg is fertilized by a sperm, all the genes (good, bad, neutral) become the offspring’s genes 18. Which parent determines the gender of the offspring? Explain your answer • The male (dad) determines the gender of the offspring • The female (mom, XX) can only pass down an X chromosome • The male (XY) can pass down either the X (produces a girl) or the Y (produces a boy) 19. In order to produce a female offspring, an egg must be fertilized by a sperm carrying a(n) X chromosome. 20. In order to produce a male offspring, an egg must be fertilized by a sperm carrying a(n) Y chromosome.

  6. 21. In Gregor Mendel’s experiments, what did he call the • original plants? P Generation (Parent Generation) • What about the first generation? F1 (First Filial) • The second generation? F2 (Second Filial) 22. In a monohybrid cross, what phenotypic ratio did Mendel observe when doing a heterozygous X heterozygous cross (F2 generation cross)? • 3:1 ratio 23. When doing a dihybrid cross, what phenotypic ratio did Mendel observe in a heterozygous X heterozygous (F2 generation) dihybrid cross? • 9:3:3:1 ratio 24. Which gender is more likely to have a recessive sex-linked disorder? Why? • MALES! • Since males only have one X chromosome, if they inherit only one X-linked recessive allele, they would have the disorder • If females (XX) inherit only one recessive allele, they would be a carrier but would not have the disorder

  7. 25. Polydactyl (Ff) X Five Fingers (ff) • Genotype of offspring: 2 Ff, 2 ff • Phenotype of offspring: 2 Polydactyl, 2 Five finger • Genotypic ratio: 2:2 • Probability of Polydactyl: 2/4 or 50% • Probability of Five Fingers: 2/4 or 50%

  8. 26. In impatient flowers, flower color shows incomplete dominance. Red (RR) is dominant to white (rr), but the heterozygous results in a pink phenotype (Rr). Two pink flowers are crossed. • Genotype of Parents: Rr & Rr • Genotype of offspring: 1 RR, 2 Rr, 1 rr • Phenotype of offspring: 1 Red, 2 Pink, 1 white • Probability of Red: ¼ or 25% • Probability of Pink: 2/4 or 50% • Probability of White: ¼ or 25%

  9. 27. In rabbits, the allele for black coat color is dominant over the allele for brown coat color. A homozygous brown coat rabbit is crossed with a heterozygous black coat rabbit. • Genotype of Parents: bb & Bb • Genotype of offspring: 2 Bb, 2 bb • Phenotype of offspring: 2 Black, 2 Brown • Probability of Black: 2/4 or 50% • Probability of Brown: 2/4 or 50%

  10. 28. In humans, the gene for the genetic disorder Tay-Sachs disease is recessive. Two parents that are carriers (heterozygous) have a child. • Genotype of Parents: Tt & Tt • Genotype of offspring: 1 TT, 2 Tt, 1 tt • Phenotype of offspring: 3 normal, 1 Tay-Sachs • Genotypic Ratio – 1:2:1 • Phenotypic Ratio – 3:1 • Probability of not having T-S: 3/4 or 75% • Probability of Tay-Sachs: 1/4 or 25%

  11. 29. Suppose a parent with homozygous Blood Type B (IB IB) has a child with a person heterozygous for Blood Type A (IAi). • Genotype of Parents: IBIB & IAi • Genotype of offspring: 2 IAIB, 2 IB i • Phenotype of offspring: 2 Type AB, 2 Type B • Probability of Type A: 0/4 or 0% chance • Probability of Type B: 2/4 or 50% chance • Probability of Type AB: 2/4 or 50% chance • Probability of Type O: 0/4 or 0% chance

  12. 30. A person heterozygous for Blood Type A (IAi) has a child with a person with Blood Type O ( ii ). • Genotype of Parents: IA I & ii • Genotype of offspring: 2 IAi, 2 ii • Phenotype of offspring: 2 Type A, 2 Type O • Probability of Type A: 2/4 or 50% chance • Probability of Type B: 0/4 or 0% chance • Probability of Type AB: 0/4 or 0% chance • Probability of Type O: 2/4 or 50% chance

  13. 31. Colorblindness is caused by a recessive X-linked. A normal vision carrier female (XBXb) has a child with a normal vision male (XB Y). • Genotype of Parents: XBXb& XB Y • Genotype of offspring: 1 XB XB, 1 XBXb, 1 XB Y, 1 XbY • Phenotype of offspring: 2 Normal Female (1 normal, 1 carrier), 1 Normal male, 1 Colorblind Male • Probability of Normal Female: 2/4 or 50% chance • Probability of Colorblind Female: 0/4 or 0% chance • Probability of Normal Male: 1/4 or 25% chance • Probability of Colorblind Male: 1/4 or 25% chance

  14. 32. Hemophilia is caused by a recessive X-linked gene. A carrier female (XHXh) has a child with a male who has hemophilia (Xh Y). • Genotype of Parents: XHXh& Xh Y • Genotype of offspring: 1 XHXh, 1 XhXh, 1 XH Y, 1 XhY • Phenotype of offspring: • 1 unaffected female (a carrier), 1 female w/ hemophilia, 1 unaffected male, 1 Male w/ hemophilia • Probability of unaffected Female: 1/4 or 25% chance • Probability of Female w hemophilia: 1/4 or 25% chance • Probability of unaffected Male: 1/4 or 25% chance • Probability of Male w hemophilia: 1/4 or 25% chance

  15. 12e. In pea plants, purple flower color is dominant to white. In the gene for seed shape, round is dominant to wrinkled. Suppose a plant heterozygous for both traits is crossed with a white flowered, wrinkeld pea plant. • Purple flower, Tall pea plant genotype: FfRr (FR, Fr, fR, fr) • White flower, Short pea plant : ffrr (fr, fr, fr, fr) • Genotypes of offspring: 4 FfRr, 4 Ffrr, 4 ffRr, 4 ffrr • Phenotypes of offspring: • 4 Purple flower & Round, 4 Purple flower & Wrinkled • 4 white flower & Round, 4 white flower & Wrinkled • Genotypic Ratio: 4:4:4:4 • Phenotypic Ratio: 4:4:4:4 • Probability of a Purple flower, Round plant: 4/16 or 25% • Probability of a Purple flower, Wrinkled plant: 4/16 or 25% • Probability of a White flower, Round plant: 4/16 or 25% • Probability of a White flower, Wrinkled plant: 4/16 or 25%

More Related