1 / 17

CDF :: Introduction

CDF Detector. CDF :: Introduction. Muon Chambers. A Roman Pot deployed detector is placed on one side of CDF at at 60m from the IP. (RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1).

rona
Télécharger la présentation

CDF :: Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. James L Pinfold EDS 2009

  2. CDF Detector CDF :: Introduction Muon Chambers A Roman Pot deployed detector is placed on one side of CDF at at 60m from the IP. (RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1) Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  3. Central Exclusive Physics Central state Proton/antiproton does not break up during interaction pT ~ 0 > 3 rap-gap , P, PP gg > 3 rap-gap  ~180o Proton/antiproton does not break up during interaction Both protons coherently scattered. Central state fully specified and measured, unlike “inclusive” production: Forward tagging of the p’s at the LHC with FP420/ 220m allows full reconstruction of the central state Mass to ~3 GeV at ISR, ~100 GeV at Tevatron, ~700 GeV at LHC Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  4. p g g X g p Exclusive Production Diagrams Gamma-gamma Photoproduction QCD Central Exclusive Production gap IP  DPE X QCD gap IP q-loop In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons - a gluon dipole. Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  5. Exclusive  Production (1) • Trigger (DIFF_CHIC_CMU1.5_PT1.5_TRK): • BSC Gap, east & west • muon + track (pt > 1.3 GeV/c; |h| < 1.2) • 3.0 < M(muon + track) < 4.0 GeVc2 • The existing sample corresponds to a lumi of 1.48 fb-1 • Offline cuts • No other activity in the events (to an |h| of 7.4) • PT(m) > 1.4 GeV/c & |h(m)| < 0.6 • Cosmic ray cuts (abs (TOF) < 3 ns) • Exclusivity cuts (same as for the e+e- paper) • STARLIGHT Monte Carlo simulation used (Klein & Nystrand) Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  6. Exclusive  Production (2) Example exclusive m+m- event: Run 199559, Event 13120174 Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  7. Exclusive  Production (4) p + p  p +  + p J Fit: 2 Gaussians + QED continuum. Masses 3.09, 3.68 GeV == PDG Widths 15.8,16.7 MeV=resolution. QED = generator x acceptance 3 amplitudes floating 402 events (with no EM shower) s Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  8. Exclusive  Production (5) IPsm+m- IPJ+m- ggm+m- continuum Good agreement on kinematics with STARLIGHT MC (Klein & Nystrand ) Introduction +--IPJ/ & (2s)IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  9. c J/() + (soft) (1) DPE QCD  • Similar selection as  search with additional isolated EM shower req. • New ChicMC -Durham • Khoze,Martin,Ryskin,Stirling, EPJ C35, 211 (2004), implemented by J. Stirling Introduction +--IPJ/ & (2s)IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  10. c J/() + (soft) (2) c J/() + (soft) The ChiC-MC-Durham is a good fit the data Good fit to  kinematics from c, if there is an EM shower in the event Introduction +--IPJ/ & (2s)IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  11. Estimating the c Contribution • Plot show fit of ET spectrum for events from J/ peak with: • EEMT tower > 100 MeV • Total number of c events: 68.2 ± 8.3 • 65.4 c events above the 80 MeV exclusivity cut • 4.0± 1.6% c event background to exclusive J/ signal • Additional  inefficiency from: Conversions - 7%, Dead regions - 5.0% • CHECK - Muon-pair events with an accompanying photon with ET > 80 MeV were from the J/ peak as expected if they are c decays Introduction  +--IPJ/ & (2s)IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  12. Backgrounds to Exclusive  • An important background is undetected proton fragmentation estimated using the LPAIR MC: • The proton frag. probability at the pp(p*) vertex is estimated as 17% • The proton frag. probability at the pIPp (p*) vertex is estimated as 24% • From the ratio of single diffractive frag. to elastic scattering at the Tevatron • The probability that all proton fragmentation products have || >7.4 is 14% • The probability that decay products may not be detected due to BSC inefficiency is 8% Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  13. Exclusive  Production - Results g • This QED cross-section is in principle very well understood • The  results agree with the Starlight (Klein & Nystrand) and LPAIR (Vermaseren) Monte Carlos • Predicted a cross-section of 2.18 ± 0.01 pb • Reminder - the ee results also agreed with the Starlight (Klein & Nystrand) and LPAIR (Vermaseren) Monte Carlos Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  14. Exclusive Charmonium - Results IPJ/and IPs) • The J/ results (ds/dy|y=0) agrees with theoretical predictions: • V.A. Khoze , A.D. Martin , M.G. RyskinEur.Phys.J.C24:459-468,2002. • S.Klein and J.Nystrand, Starlight, Phys. Rev. Lett. 92:142003 (2004). • L.Motyka and G.Watt, Phys. Rev. D78:014023 (2008). • W.Schafer and A.Szczurek, Phys. Rev. D 76, 094014(2007). • V.P.Goncalves and M.V.T.Machado, Eur. Phys. J. C 40, 519 (2005). • The (2s) result consistent with the Starlight prediction • R = (2s)/(1s) = 0.14 ± 0.05 is in agreement with the HERA value of R = 0.166 ± 0.012 at similar s(p) (H.Jung, Acta. Phys. Polon. Supp.1, 531 (2008)) d/dy|y=0 = 3.0 ± 0.3 nb Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  15. Exclusive c Production - Results IP + IPcJ/(soft) Theory 90 nb • The  -in theoretical errors - with: • T predictionofKhoze, Martin & Ryskin EPJ C19, 447 (2001), Erratum C20 599 (2001) & Khoze , Martin, Ryskin & Stirling, Eur.Phys.J.C35:211-220,2004 • The calculation of Pasechnik, Szczurek & Teryaev,arXiv:0902.1689[hep-ph]. • In this analysis it is assumed that the produced c is 0++ (JPC) • NB double-diffractive production of exclusive axial vector (1++) & tensor (2++) quarkonium states are strongly suppressed (Khoze, Martin & Ryskin, EPJ C19, 447 (2001) • Caveat: the large BR of the c (1++) to J/ means it may contribute to our signal Introduction  +--IPJ/ & (2s)IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  16. Just Published (19th June 2009) Principal authors: Albrow, Pinfold & Zhang Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion James L Pinfold EDS 2009

  17. Final Words • Our results agree with to the Durham Group’s theoretical predictions for the observation of these states • IMPLICATIONS FOR THE LHC • Use ofggm+m- /e+e- as a lumi monitor • Study ofggm+m- & -p  J/ m+m- as a calibration for FP420 is underway • The process p-pgg/cc/ cb/ j-j are standard candles for the exclusive Higgs • Thus, according to Durham Group predictions principle, we should see the CEP Higgs boson at the LHC • A proving ground for Central Exclusive Physics that will be exploited by the RP220 /FP420 forward proton spectrometers at the LHC • We are understanding that the LHC is a gg, g-p (g-IP) & IP- IP collider IP IP g LHC p p g g IP Introduction +--IPJ/ & (2s) IP-IPc J/ + Conclusion James L Pinfold EDS 2009

More Related