1 / 31

D 0 Mixing and CP Violation

D 0 Mixing and CP Violation. Boštjan Golob Belle & Belle II University of Ljubljana, Jožef Stefan Institute. 1. Phenomenology 2. Measurements 3. Decays to CP eigenstates 4. Hadronic WS decays 5. t-dependent Dalitz analyses 6. Average 7. Constraints 8. Outlook. q 2. q 1.

saxton
Télécharger la présentation

D 0 Mixing and CP Violation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. D0 Mixing and CP Violation Boštjan Golob Belle & Belle II University of Ljubljana, Jožef Stefan Institute 1. Phenomenology 2. Measurements 3. Decays to CP eigenstates 4. Hadronic WS decays 5. t-dependent Dalitz analyses 6. Average 7. Constraints 8. Outlook

  2. q2 q1 q2 q1 1. Phenomenology P0 P0 D0 mixing is FCNC of u-type quarks P0 = K0, Bd0, Bs0 and D0 Time evolution flavor states ≠ Heff eigenstates: (defined flavor) (defined m1,2 and G1,2) SM: |x|, |y|  O(10-2) |x|, |y| << 1  Decay time distribution of experimentally accessible states D0, D0 sensitive to mixing parameters x and y, depending on final state

  3. 1. Phenomenology Oscillation frequency P(P0P0) P(P0P0) Bs BdD0 x=0.8, y=0 x=26, y=0.15 x=0.01, y=0.01 Thus the system of the world only oscillates around a mean state from which it never departs except by a very small quantity Marquis de Laplace (1749 -1827)

  4. Vus* 1. Phenomenology K+ CP violation Vcs D0 D0: first two quark generations; CKM elements ≈ real; using CKM unitarity: below current exp. sensitivity; signals New Physics K- parameterization: RD ≠1: Cabibbo suppression AD ≠0: CPV in decay AM ≠0: CPV in mixing f ≠0 : CPV in interference

  5. 2. Measurements - general Experiments Cleo-c Belle BaBar CDF II Common methods D*+ →D0ps+ charge of ps flavor of D0; dM=M(D0ps)-M(D0)  background reduction p*(D*) > 2.5 GeV/c (or impact parameter) eliminates D0 from b → c

  6. 3. Decays to CP eigenstates Belle, PRL 98, 211803 (2007), 540fb-1 D0→ K+K- / p+p- CP even final state; no CPV: CP|D1> = |D1> t=1/G1; K-p+: mixture of CP states  t=f(1/G1,1/G2) S. Bergman et al., PLB486, 418 (2000) AM, : CPV in mixing and interference exp. issues: - good S/N (tagged decays) - precise modeling of decay-t resolution needed yCP=(1.24±0.39±0.13)% BaBar, PRD78, 011105 (2008), 384fb-1

  7. t-dependent: 3. Decays to CP eigenstates CPV t-dependent t-integrated: Belle, PRL 98, 211803 (2007), 540fb-1 BaBar, PRD78, 011105 (2008), 384fb-1 --CP= -1 (fKS) -- CP= +1 (a0(980)KS) related meas. D0→ fKS t’’ t’’ t’ m(K+K-) exp. issues: un-tagged decays; worse st due to Ks ; comparison of topologically equal decays → reduced effects of resolution in <t>

  8. 4. WS decays D*+→ D0pslow+ D0 → D0 → K+ p- DCS decays  interference; t-dependence to separate DCS/mixed • CPV allowed: • separate D0 and D0 tags • (x’2,y’,RD) → (x’±2, y’±,RD±) likelihood contours d: unknown strong phase DCS/CF BaBar, PRL 98, 211802 (2007), 384fb-1 3.9s 1s 2s 3s 4s AD = (-21 ± 52 ± 15) ·10-3 5s exp. issues: - signif. background in WS; - accurate resol. f. param.; - stat. issues for x’2<0; results of similar accuracy Belle, PRL 96, 151801 (2006), 400fb-1 CDF, PRL 100, 121802 (2008), 1.5fb-1

  9. 5. t-dependent Dalitz t D0→KSp+p- different types of interm. states; CF: D0→ K*-p+; DCS: D0→ K*+p-; CP: D0→r0 KS if f = f  relative phases determined (unlike D0→ K+p-); t-dependence: regions of Dalitz plane → specific t dependence f(x, y); D0→f exp. issues: - model system.; - direct meas. x, y; - any f = f: sensitivity to x depending on a priori unknown strong phase variation Belle, PRL 99, 131803 (2007), 540fb-1 m±2 = m2(KSp±), D0→f l1,2=f(x,y); n.b.:K+p-:x’2, y’ access directly x, y

  10. 6. Average Average of results K+K- c2 fit including correlations among measured quantities K+p- RM KSp-p+ d uncertainty c2/n.d.f.= 25.3/20 CPV http://www.slac.stanford.edu/xorg/hfag/charm/ (x,y)≠(0,0): 9.8 s; CP even state heavier and shorter lived; no CPV within 1s

  11. 8. Outlook 1, 2, 3 s @ 50 ab-1 expected sensitivity only KK/pp, Kp and Kspp projected sensitivities included HFAG c2 fit 50 ab-1 E. Barberio et al. (HFAG), arXiv:0808.1297 & http://www.slac.stanford.edu/xorg/hfag/

  12. 7. Constraints on NP constraints from mixing 21 NP models considered →17 with useful constraints; improved existing constraints; examples: E. Golowich et al., PRD76, 095009 (2007) D0 D0 R couplings 4th generation fermion R SUSY: mb’ [GeV] xD=1.00%±0.08% constraint (50 ab-1) xD=1.00%±0.25% constraint [GeV] xD=1.00%±0.08% constraint (50 ab-1) xD=1.00%±0.25% constraint |Vub’Vcb’|

  13. 8. Outlook unexploited possibilities with B-factory data T-odd moments: D →KKpp charmed baryon decays: Lc→Lp, L → pp exp. issues: -unpolarized Lc; - p, p detector asymmetry • a: (KK, ppplane); • exp. issues: • Br(D →KKpp) 1/2 Br(D →KK); • - angular analysis DCPV can be induced by FSI CPV

  14. Conclusion • D mixing and CPV are a unique handle to test FCNC of • u-like quarks • Important constraints on NP models from existing results • (yet to be fully confronted with other experimental constraints) • B-factories have not yet spoken the final word • (only part of possible measurements done) • Super-B factory can reach s(x,y)  5x10-4, • s(ACP~ x sinf, AM y cosf)  5x10-4 • (possible evidence for NP) there may be hidden treasures in charm physics....

  15. Supplementary slides

  16. Vuj* Vci* Vcj Vui u c W+ D0 D0 d, s, b d, s, b W- u c K+ D0 D0 K- Phenomenology more x and y in SM 2nd order perturb.: short distance: |x| ~ O(10-5) G. Burdman, I. Shipsey, Ann.Rev.Nucl.Sci. 53, 431 (2003) DCS SU(3) breaking absorptive part (real interm. states)  y dispersive part (off-shell interm. states)  x long distance: |x|, |y| ~ O(10-2) I.I. Bigi, N. Uraltsev, Nucl. Phys. B592, 92 (2001); A.F. Falk et al., PRD69, 114021 (2004) D0 mixing: rare process in SM; possible contrib. from NP

  17. Measurements – experim. more A) Experiments continuum production s(c c)  1.3 nb (~109 XcYc pairs) e+e-→ y(3770) → D0D0, D+D- (coherent C=-1 state); ~800 pb-1 of data available at y(3770) 2.8x106 D0D0 3.5 fb-1 on tape s(D0; pt>5.5 GeV,|y|<1)≈13 mb 50x109 D0’s very diverse exp. conditions ds(D0)/dpt [nb/GeV] c g* c

  18. K-p+ Decays to CP eigenstates more Fit Belle, PRL 98, 211803 (2007), 540fb-1 simultaneous binned likelihood fit to K+K-/K-p+/p+p- decay-t, common free yCP R : ideally each si Gaussian resol. term with fraction fi; : described by 3 Gaussians  event-by-event st trec-tgen/st parameters of R depend slightly on data taking conditions t = 408.7±0.6 fs

  19. Decays to CP eigenstates more D0→ K+K- / p+p- confirmation: BaBar, arXiv:0712.2249, 384fb-1 yCP=(1.24± 0.39±0.13)% yCP currently most precisely measured param.

  20. t-dependent: 3. Decays to CP eigenstates CPV t-dependent t-integrated: Belle, PRL 98, 211803 (2007), 540fb-1 BaBar, PRD78, 011105 (2008), 384fb-1 ACPKK ACPpp t-integrated ACPmeas =Aep + AFB + ACPf Aep: comparison of tagged/untagged (D*+→D0p+),D0→K-p+ AFB: asymmetric f(cosqCMS) exp. issues: - meas. in bins of pD, cosqD due to Aep(s determined by NKptag); - Aep can be used in other meas.; |cosqCMS| BaBar, PRL 100, 061803 (2007), 386fb-1 Belle, PLB 670, 190 (2008), 540fb-1

  21. 3. Decays to CP eigenstates related meas. D0→ fKS CP odd final state; t(fKS)= 1/G2 > 1/G1= t(K+K-) exp. issues: - un-tagged decays; - worse st due to Ks - comparison of topologically equal decays → reduced effects of resol. in <t> t’’ t’ t’’ m(K+K-) --CP= -1(fKS) -- CP= +1 (a0(980)KS) Belle, preliminary, 600fb-1

  22. Decays to CP eigenstates more D0→ fKs Belle, preliminary, 600fb-1 method

  23. Decays to CP eigenstates more D0→ fKs Belle, preliminary, 600fb-1 • Dalitz model • CP=-1 • fKs • CP=+1 • a0(980)Ks • a0(1450)Ks • f0(980)Ks • f0(1370)Ks • f2(1270)Ks • flavour spec. • K-a0(980)+ • K+a0(980)- • K-a0(1450)+ model affects only fraction of CP=+1 states in individual mass interval; small model syst. uncertainty

  24. Decays to CP eigenstates more D0→ fKs Belle, preliminary, 600fb-1 syst. uncertainty on Dt from MC (stat.) data fluctuations

  25. D*+→ D0pslow+D0 → D0 → K+p- Belle, PRL 96, 151801 (2006), 400fb-1 BaBar, PRL 98, 211802 (2007), 384fb-1 WS decays more C) WS decays (non-CP) CDF, PRL 100, 121802 (2008), 1.5fb-1 NWS/NRS NWS~13x103 CDF, PRL 100, 121802 (2008), 1.5fb-1 1s CDF: trigger: h+h- from second. vtx; NWS/NRS vs. t/t from M, dM, imp. param.; 2s 3s 4s

  26. t-dependent Dalitz more Belle, PRL 99, 131803 (2007), 540fb-1 D0→KSp+p- most accurate x K*X(1400)+ K*(892)+ r/w K*(892)-

  27. t-dependent Dalitz more BaBar, Lepton Photon 07, 384fb-1 D0→KSpp0 BaBar, PRL97, 221803 (2006), 384fb-1

  28. 5. t-dependent Dalitz Belle, PRL 99, 131803 (2007), 540fb-1 D0→KSp+p- exp. issues: - model system.; - direct meas. x, y; - any f = f: sensitivity to x depending on apriori unknow strong phase variation related meas. D0→K+p-p0 separate WS/RS Dalitz distributions; t-distrib. analogous to D0 →K+ p-; RS t-integrated Dalitz analysis; WS Dalitz analysis; no mixing point 0.8% C.L. dKpp: unknown strong phase shift DCS/CF BaBar, PRL97, 221803 (2006), 384fb-1

  29. Average more Expected sensitivities from individual meas. L = 5 ab-1L = 50 ab-1L = 5 ab-1L = 50 ab-1 s(x) 0.14% 0.10% 0.08% 0.05% KsKK, ppp0 total error :3 s(y) 0.11% 0.08% 0.06% 0.04% KsKK, ppp0 total error :3 s(yCP) 0.16% 0.11% s(AG) 0.12% 0.07% s(ACP) 0.12% 0.07% s(x’2) 0.11x10-3 0.09x10-3 0.13x10-3 0.10x10-3 x’2± stat. error •2 s(y’) 0.20% 0.16%0.23% 0.17% y’± stat. error •2 s(AD) 2.1% 1.7% s(RD) 5x10-5 1.5x10-5 7x10-5 2x10-5 RD± stat. error •2 s(|q/p|)0.13 0.09 0.08 0.05 KsKK, ppp0 total error :3 s(f) 0.12 rad 0.07 rad 0.07 rad 0.04 rad KsKK, ppp0 total error :3 i.e. assuming sens. same as in Kspp for CPV allowed fit total error scaled

  30. Average more Projected sensitivities from average 5 ab-1 5 ab-1, KsKK, ppp0 50 ab-1 50 ab-1, KsKK, ppp0 + assuming ACP=ADs(AD) ~ 0.1% LHCb, 10 fb-1 (5 y): s(x’2)~6x10-5, s(y’)~0.9x10-3 s(yCP)~0.05% main sensitivity on x, |q/p|, ffrom t-dependent Dalitz analyses of Kspp, ppp0, KsKK

  31. Average more y(3770) →D0D0 • constraints • average • direct meas. • (fit w/o external input) cosd 1.0 0.5 0 -0.5 -1.0 1 0 -1 y’ measured y’=ycosd-xsind [%] d measured 0 1 2 3 4 5 d [rad] 0 1 2 3 4 5 d [rad]

More Related