1 / 11

Quantum dots and their interaction with DNA

Název: Školitel: Datum:. Quantum dots and their interaction with DNA. Stanisavljević Maja. 05.04.2013. Reg.č.projektu : CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce v oblasti "in vivo " zobrazovacích technik. Quantum dots – history of synthesis

seda
Télécharger la présentation

Quantum dots and their interaction with DNA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Název: Školitel: Datum: Quantum dots and their interaction with DNA StanisavljevićMaja 05.04.2013. Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce v oblasti "in vivo" zobrazovacích technik

  2. Quantum dots – history of synthesis • 1980 – Ekimov, Efros – first description • of quantum dots • 1993 - Murray, Norris, Bawendi • CdE(E=S,Se,Te) and other improvments • like ZnS shell • Semiconductor nanocrystals synthetized • from II and VI or III and V elements of PSE. • today-enviromental-friendly synthesis ZnS CdTe • Characteristics • small size 1-10nm • absorbtion of light in wide range • emmision range very narrow • photostability and resistance to • chemical degradation • poisonous core and hydrophobic • surface modification • bioconjugation

  3. DNA • 1869 – isolated by Swiss scientist • Friedrich Miescher • 1953 – described DNA structure • Watson and Crick • 1962 – they recieved Nobel prize • for solving nature’s biggest secret • DNA helix-two complementary and antiparallel polynucleotide strands QD • Experiment hypothesis: • Major groove – 2.2 nm • QD-GSH – 2 nm • DNA invisible for CE-LIF • Mix DNA and observe

  4. Measurements conditions • CE-LIF • Capillary lenght: ltot=57cm,leff=50cm, ID=75µm • BGE: 20mM borate pH 9.2 • Separation: 20kV, positive polarity • Injection: 3.4kPa for 20sec • Excitation wavelenght: 488nm • Emmision wavelenght: 520 nm • Sample: QD-GSH and DNA from chicken in conc. of 1 mg/mL

  5. QD-GSH λex = 380 nm λem = 524 nm If (a.u.) CE-LIF QD-GSH Migration time (min) If (a.u) heated QDs 10 min at 50oC Intensity % Migration time (min) Size (nm)

  6. QD-GSH + DNA – interaction through time IF (a.u.) QD Migrationtime (min) QD

  7. QD-GSH with different concentration of DNA DNA 1 – 0.25 mg/mL DNA 2 – 0.50 mg/mL DNA 3 – 1.00 mg/mL QD-GSH + DNA 3 QD-GSH + DNA 2 IF (a.u.) QD-GSH + DNA 1 QD-GSH Height of peak Time of migration (min) Concentraton of DNA (mg/mL)

  8. QD-GSH - dsDNAvsssDNA ssDNA IF (a.u.) No complex dsDNA QD-GSH - hybridization of DNA QDs + ssDNA QDs + dsDNA QDs Migrationtime (min) IF (a.u.) Hybridization of DNK: 99oC, 15 min Migrationtime (min)

  9. Conclusions • QDs and dsDNA interacts creating complex – in shape of peak • Interaction peak grows through time and increasing DNA concentration • Complex is not created with ssDNA or hybridized dsDNA– possible confirmation of QDs being caught in major groove • Some QDs with different capping agents

  10. Thanks to : • Departament of chemistry and biochemistry • Jana Chomoucka for QD preparing

  11. THANK YOU ATTENTION! FOR

More Related