1 / 28

EE5342 – Semiconductor Device Modeling and Characterization Lecture 21 - Spring 2005

EE5342 – Semiconductor Device Modeling and Characterization Lecture 21 - Spring 2005. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. Gummel-Poon Static npn Circuit Model. Intrinsic Transistor. C. R C. I BR. B. R BB. I LC. I CC - I EC = {IS/Q B }*

swain
Télécharger la présentation

EE5342 – Semiconductor Device Modeling and Characterization Lecture 21 - Spring 2005

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE5342 – Semiconductor Device Modeling and CharacterizationLecture 21 - Spring 2005 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. Gummel-Poon Staticnpn Circuit Model Intrinsic Transistor C RC IBR B RBB ILC ICC -IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)} IBF B’ ILE RE E

  3. IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB= {½+[¼+(BFIBF/IKF + BRIBR/IKR)]1/2} (1 - vBC/VAF - vBE/VAR )-1 Gummel Poon npnModel Equations

  4. Reverse Active Operation iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 VAR ParameterExtraction (rEarly) iE = -IEC= (IS/QB)exp(vBC/NRVt), where ICC= 0, and QB-1= (1-vBC/VAF-vBE/VAR ) {IKR terms}-1, so since vBE = vBC - vEC, VAR ~ iE/[iE/vBE]vBC

  5. Reverse EarlyData for VAR • At a particular data point, an effective VAR value can be calculated VAReff = abs{iE/[iE/vBE]vBC} • The most accurate is at vBE = 0 (why?) vBC = 0.85 V vBC = 0.75 V iE(A) vs. vEC (V)

  6. Reverse EarlyVAR extraction VAReff = |iE/[iE/vBE]vBC| • VAR was set at 200V for this data • When vBE = 0 vBC = 0.75VAR=200.5 vBC = 0.85VAR=200.2 vBC = 0.75 V vBC = 0.85 V VAReff(V) vs. vEC (V)

  7. VAF ParameterExtraction (fEarly) Forward Active Operation iC = ICC= (IS/QB)exp(vBE/NFVt), where ICE= 0, and QB-1= (1-vBC/VAF-vBE/VAR )* {IKF terms}-1, so since vBC = vBE - vCE, VAF ~|iC/[iC/vBC]vBE| iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9

  8. Forward EarlyData for VAF • At a particular data point, an effective VAF value can be calculated VAFeff = abs{iC/[iC/vBC]vBE} • The most accurate is at vBC = 0 (why?) vBE = 0.85 V vBE = 0.75 V iC(A) vs. vCE (V)

  9. Forward EarlyVAf extraction VAFeff = |iC/[iC/vBC]vBE| • VAF was set at 100V for this data • When vBC = 0 vBE = 0.75VAF=101.2 vBE = 0.85VAF=101.0 vBE = 0.75 V vBE = 0.85 V VAFeff(V) vs. vCE (V)

  10. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE+ iBRB- iERE vBCx = vBC+iBRB+(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms}-1

  11. Sample rg data forparameter extraction • IS=10f • Nr=1 • Br=2 • Isc=10p • Nc=2 • Ikr=.1m • Vaf=100 • Rc=5 • Rb=100 iB data iE data iE, iB vs. vBCext

  12. Reverse GummelData Sensitivities Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC c vBCx = 0 a d e b iB iE iE(A),iB(A) vs. vBC(V)

  13. Reverse GummelData Sensitivities Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC c vBCx = 0 a d e b iB iE iE(A),iB(A) vs. vBC(V)

  14. Region (b) rgData Sensitivities Region b - IS, NR, VAF, RB, RC iE = bRIBR/QB = ISexp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ){IKR terms}-1

  15. Region (a) rgData Sensitivities Region a - IKRIS, RB, RC, NR, VAF iE=bRIBR/QB~[ISIKR]1/2exp(vBC/2NRVt) (1-vBC/VAF-vBE/VAR )

  16. Region (e) rgData Sensitivities Region e - ISC, NC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  17. Region (d) rgData Sensitivities Region d - BR, IS, NR iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  18. Region (c) rgData Sensitivities Region c - BR, IS, NR, RB, RC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  19. Simple extraction of NR, NC from rg data Data set used Nr = 1 Nc = 2 Flat Neff region from iE data = 1.00 for 0.195 < vBC < 0.375 Max Neff value from iB data is 1.914 for 0.195 < vBC < 0.205 iB data iE data NEeff vs. vBCext

  20. Simple extractionof IS, ISC from data Data set used • IS = 10fA • ISC = 10pA Min ISeff for iE data = 9.96E-15 for vBC = 0.200 Max ISeff value for iB data is 8.44E-12 for vBC = 0.200 iB data iE data ISeff vs. vBCext

  21. Simple extractionof BR from data • Data set used Br = 2 • Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A< iE < 14.4A • Minimum value of Neff =1 for same range iE/iB vs. iE

  22. Forward ActiveHybrid-pi Circuit model Fig 9.33*

  23. Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB

  24. RB and RE from FG data

  25. RB and RE from FG data • In this case, the data were generated with • RB = 98.76 W, compare to 77.4 - 32.3 • RE = 1.432 W, compare to 32.3

  26. h11_vs_ib

  27. h11_vs_frequency

  28. h11_vs_1/ib

More Related