1 / 1

Nanocrystalline Carbide Derived Carbon for Tribological Applications

Nanocrystalline Carbide Derived Carbon for Tribological Applications. Investigators: Michael McNallan , Civil and Materials Engineering, UIC; Ali Erdemir , Argonne National Laboratory Prime Grant Support: U.S. Department of Energy.

tahlia
Télécharger la présentation

Nanocrystalline Carbide Derived Carbon for Tribological Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nanocrystalline Carbide Derived Carbon for Tribological Applications Investigators: Michael McNallan, Civil and Materials Engineering, UIC; Ali Erdemir, Argonne National Laboratory Prime Grant Support: U.S. Department of Energy • Mechanical Seals and bearings fail due to frictional heating and wear • Materials used are hard ceramics, such as SiC or WC • Friction can be reduced by coating with carbon as graphite or diamond • Graphitic coatings are not wear resistant • Diamond coatings are wear resistant, but fail by spallation or delamination from the underlying ceramic max. safe temperature SiC-SiC SiC-CDC Pump seal face temperature during dry running at 4000 rpm with and without CDC coating • Produce a low friction carbon layer by chemical conversion of the surface of the carbide • SiC(s) + 2Cl2(g)  SiCl4(g) + C(s) • At temperatures < 1000oC, carbon cannot relax into equilibrium graphitic state and remains as Carbide Derived Carbon (CDC) • CDC coating contains nano-porous amorphous C, fullerenes, and nanocrystalline diamond • CDC is low friction, wear resistant, and resistant to spallation and delamination • CDC has been produced in the laboratory • It’s structure and conversion kinetics have been characterized • Tribological performance was verified in laboratory and industrial scale pump tests with water • CDC was patented and selected for an R&D 100 Award in 2003 • CDC was Licensed to Carbide Derivative Technologies, Inc.in 2006 • Scale up to industrial production rates, characterization of process reliability and testing in specific industrial environments is the next goal.

More Related