1 / 27

Geant4 Radiation Analysis for Space GRAS

Geant4 Radiation Analysis for Space GRAS. G.Santin 1 , V.Ivanchenko 2 , R.Lindberg 1 , H.Evans 1 , P. Nieminen 1 , E.Daly 1 1 Space Environments and Effects Analysis Section, ESA/ESTEC 2 PH SFT, CERN Geant4 Space Users Workshop Leuven, 5 Oct 2005. Outline. Motivation

ted
Télécharger la présentation

Geant4 Radiation Analysis for Space GRAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geant4Radiation Analysisfor SpaceGRAS G.Santin1, V.Ivanchenko2, R.Lindberg1, H.Evans1, P. Nieminen1, E.Daly1 1 Space Environments and Effects Analysis Section, ESA/ESTEC 2 PH SFT, CERN Geant4 Space Users Workshop Leuven, 5 Oct 2005

  2. Outline • Motivation • Description of the tool structure and functionalities • GRAS as • framework for Monte Carlo analyses • Monte Carlo engine for external packages (e.g. SPENVIS) • Present status, expectations, conclusions Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  3. (Extra) Galactic and anomalous Cosmic Rays Protons and Ions <E> ~ 1 GeV, Emax > 1021 eV Continuous low intensity Solar radiation Protons, some ions, electrons, neutrons, gamma rays, X-rays… Softer spectrum Event driven – occasional high fluxes over short periods. Trapped radiation Electrons ~< 10 MeV Protons ~< 102 MeV Goals Effects in components Science analyses Mission design Environment models Threats to life Effects to science detectors Simulation of the emission and the propagation of radiation in space Ground tests Extrapolation to real life in space Cheaper than accelerator tests Particle signal extraction Background Degradation Single Event Effects (SE Upset, SE Latchup, …) Degradation (Ionisation, displacement,…) Background (Spurious signals, Detector overload,…) Charging (internal, interferences, …) Dose (dose equivalent) and dose rate in manned space flights Radiobiological effects Effects Simulations of the Space Radiation Environment Sources Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  4. Ray-Tracing Look-Up Table (e.g. ESABASE, SSAT) Good Physics (e.g. MULASSIS) CSDA appr. (e.g. SHIELDOSE-2) Commonly usedReady to UseSimulation Tools Good physics 3D 3D 1D Physics Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  5. Trajectory average spectra 1.00E+05 1.00E+04 electrons 1.00E+03 protons 1.00E+02 Differential flux (/cm2/s/MeV) 1.00E+01 1.00E+00 0.01 0.1 1 10 100 1000 1.00E-01 1.00E-02 Energy (MeV) The example of MULASSIS • Geant4-based tool • Geant4 is a “Toolkit” • Flexible, powerful, extendable,… • But intentionally “not a tool” ready for use • MULASSIS Features • 1D Layered geometry via scripting • Geant4-based • Predefined physics lists • Materials by chemical formula • Interfaced to the Space Environment spectra inside the Web-based SPENVIS framework • User success • Raised the level of radiation shielding analysis in the space community • Limitations • 1D geometry • Extensibility Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  6. Geometry GDML, C++, CAD (on-going) Physics EM, Hadronics, Ions Radiation environment SPENVIS, CREME96 Histogramming AIDA, ROOT, CSV GRASGeant4 Radiation Analysis for Space • Analysis types • 3D • Dose, Fluence, NIEL, activation… for support to engineering and scientific design • Dose Equivalent, Equivalent Dose,… for ESA exploration initiative • SEE: PHS, LET, SEU models • Analysis independent from geometry input format • GDML, CAD, or existing C++ class, … • Pluggable physics lists • Different analyses without re-compilation • Modular / extendable design • Publicly accessible Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  7. Geometry 1 GEOMETRY - GDML (Geometry Description Markup Language) ASCII file, looks similar to HTML Adopted as exchange format by SPENVIS - C++ model - Future CAD interface /gras/geometry/type gdml /gdml/file geometry/see1.gdml <materials> <material name="SiO2"> <D value="2.200"/> ... ... <solids> <box name="solid_World" x="50.0" y="50.0" z="50.0"/> ... <volume name="World"> <materialref ref="Vacuum"/> <solidref ref="solid_World"/> <physvol> <volumeref ref=“satellite"/> <positionrefref="center"/> ... ... GRAS components Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  8. GRAS components 2 • G4 General Particle Source Source SOURCE: RADIATION ENVIRONMENT /gps/pos/type Surface /gps/pos/shape Sphere ... /gps/ang/type cos /gps/particle e- /gps/ene/typeArb /gps/hist/type arb /gps/hist/point 4.000E-02 2.245E+08 ... /gps/hist/point 7.000E+00 0.000E+00 /gps/hist/inter Lin Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  9. 3 Physics PHYSICS All the Geant4 physics models are available through script commands /gras/phys/addPhysics standard /gras/phys/addPhysics binary /gras/phys/addPhysics binary_ion /gras/phys/addPhysics gamma_nuc /gras/phys/addPhysics lowe_neutron /gras/phys/setCuts 0.1 mm /gras/phys/region/setRegionCut detectorRegion default 0.01 mm /gras/phys/stepMax1.0 mm /gras/phys/regionStepMaxdetectorRegion 0.01 mm User can use a private C++ Physics List GRAS components Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  10. NIEL Analysis Modules … Analysis Modules Fluence Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Analysis Manager GEANT4 GRAS components 4 Analysis • At present: • Dose • Fluence • NIEL • Deposited charge • Dose equivalent • Equivalent dose • Path length • SEE • Pulse Spectrum • Charge deposit • Source monitoring Component degradation, background RADIATION EFFECTS Human exploration initiatives Components SEE /gras/analysis/dose/addModule doseB12 /gras/analysis/dose/doseB12/addVolumeID b1 /gras/analysis/dose/doseB12/addVolumeID b2 /gras/analysis/dose/doseB12/setUnit MeV • Analysis independent from geometry input mode - GDML, or existing C++ class, … - Open to future geometry interfaces (CAD,…) Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  11. Total Ionizing Dose Also per incoming particle type, with user choice of interface Gives event Pulse Height Spectrum For analysis of induced signal Units: MeV, rad, Gy NIEL MULASSIS implementation Modular approach Several curve sets available CERN/ROSE (p, e-, n, pi) SPENVIS/JPL (p) Messenger Si (p, e-) Messenger GaAs (p, e-) Units: 95MeVmb, MeVcm2/g MeVcm2/mg, keVcm2/g GRAS Analysis modules:Component degradation,Background • FLUENCE • Particle type, energy, direction, time • One/Both ways Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  12. Dose equivalent ICRP-60 and ICRP-92 LET-based coefficients Units: MeV, Sv, mSv, Gy, rad New user requirements include: planetary models (e.g. scaling of SPE fluence to other planets, magnetic field description, crustal maps) ion physics (electromagnetics / hadronics for HZE) biological effects (macroscopic / microscopic models) GRAS Analysis modules:Human Exploration Initiatives GRAS Biological effects modules • Equivalent Dose • ICRP-60 weights • User choice of weight interface • Units: • MeV, Sv, mSv, Gy, rad Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  13. Path length analysis Event distribution of particle path length in a given set of volumes If used with “geantinos”, it provides the geometrical contribution to the energy deposition pattern change In a 3D model W.r.t. a 1D planar irradiation model SEE models Threshold simple model implemented Design open to more complex modeling Coupling to TCAD will give device behavior CAD import (on-going) will ease geometry modeling box Complex geometry GRAS Analysis modules:SEE in microelectronics Courtesy Sony/Toshiba Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  14. Volume To identify a volume in the geometry tree At present implemented as the couple (name, copy No) Volume Interface To identify the boundary between two volumes Couple of Volumes Each module can have several Volumes and several Volume Interfaces Different actions taken by various module types when “in volume” / “at interface” Result output units User choice, module type dependent b4 b3 b2 b1 supp sat GRAS Analysis modules:Flexibility /gras/analysis/dose/addModule doseB12 /gras/analysis/dose/doseB12/addVolumeID b1 /gras/analysis/dose/doseB12/addVolumeID b2 /gras/analysis/dose/doseB12/setUnit MeV • Example: dose module “DoseB12” • Sensitive volumes: • b1 and b2 • Interface (to tag particle type): • between (sat, world) • To detect secondaries created in the satellite structure Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  15. 1. Geometry 2. Primary generation 3. Physics 4. Modular analysis set via macros Utility classes: UI for many useful tasks Regions Create new region Assign a volume to a region Cuts by region Scripting examples Visualisation Geometry vis. options Colour definition Volume colour / visibility / vis.options … Output Interface to AIDA tools Histograms, tuples ASCII output always available Scripting All GRAS features are available via UI: text macro files or Interactive UI commands GRAS Building blocks + Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  16. MC analysis with no C++ coding Geometry via GDML Physics, Source, Analysis via scripts Upgrades of models / interfaces Extend the tool New analysis module New interface (to geometry / post-processing) … Open to collaborative development http://geant4.esa.int Satisfied Not satisfied… Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  17. Analysis Modules NIEL Analysis Modules Fluence Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules Dose Analysis Modules GRAS AnalysisModular, extendable design GRAS Run Action GRAS Run Manager GRAS Event Action GRAS Analysis Manager GRAS Tracking Action GRAS Stepping Action No analysis at this level Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  18. Begin of Run Begin of Event Pre Track Step Post Track End of Event End of Run Analysis Module • Easy to implement: Self contained analysis element • Initialization, event processing, normalization, printout  all inside • Only one class to create/derive in case a new type of analysis is needed • No need to modify Run+Event+Tracking+Stepping actions • AIDA histogramming “per module” • G4 UI commands “per module” • Automatic module UI tree • a la GATE /gras/analysis/dose/addModule doseCrystal /gras/analysis/dose/doseCrystal/setUnit MeV XXX Analysis Module Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  19. GEANT4 Your analysis Your results GRAS Run Manager Analysis Module Analysis Module GRAS AnalysisManager GRASresults Analysis Module Analysis Module For present Geant4 usersGRAS and previous work • 2 ways of obtaining GRAS output without discarding hours/days/months of work • Inserting C++ Geometry, Physics and/or Primary Generator classes inside GRAS • In the main gras.cc • Inserting GRAS into your existing applications • Which way is the fastest depends on existing work Ronnie Lindberg (ESA). See talk this session Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  20. Geometry exchange format - GDML - CAD / STEP - … Script instructions: - Physics - Radiation Environment - Analysis type Engineering tools:GRAS as flexible Monte Carlo engine Geometry modeling Tool GUI GRAS Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  21. User Requirements • Complete tool (Geometry, Physics, Source, Analysis) • Available as standalone executable • No need to download and compile Geant4 • Easy to integrate in existing applications • Analysis types • 3D • Dose, Fluence, NIEL, activation… for support to engineering and scientific design • Dose Equivalent, Equivalent Dose,… for ESA exploration initiative • Transients: PHS, LET, SEU models • Analysis independent from geometry input mode • GDML, or existing C++ class, … • Different analyses set without re-compilation • Modular / extendable design • Source and Physics description adequate to space applications • Solar events • Cosmic rays Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  22. GRAS is being used for • Herschel • Test beam detector study • Radiation effects to photoconductors and bolometers • JWST • Dose • Background • ConeXpress • See talk by Ronnie Lindberg • Electronic components • Rad-hardness, local shielding, etc. Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  23. GRAS forHERSCHEL • Herschel PACS Photoconductor instrument • Study and test of the detector to assess glitch rate • Impact on science objectives • Simulation of the proton irradiation at Leuven, Belgium • Comparison with glitch data on-going • Need precise description of energy degraders and beam parameters • Extrapolation to detector behavior in space GRAS Pulse Spectrum GRAS Fluence Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  24. Instrument design phase Radiation shielding, material choice Secondary neutron production experiment Beam test at PSI, Switzerland GRAS simulation of the set-up Time of Flight (TOF) based neutron spectrum GRAS for JWST NIRSpecDegradation gamma proton neutron 3D Realistic model Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  25. Secondary particle production Shielding effect on the particle flux on the detector Cosmic Ray background CRÈME’96 Solar Minimum Proton simulations Results Fluxes onto the detector Protons, Gammas, electrons neutrons Deposited energy per particle type GRAS for JWST NIRSpecBackground Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  26. CVS repository online http://geant4.esa.int Code Latest stable tag works with Geant4 7.1 GDML 2.3 Documentation Introduction README file Installation INSTALL file Detailed User Manual In preparation New analysis types Activation, LET/SEE On-going collaboration with QinetiQ / REAT_MS contract Open to new collaborations Minor improvements Automatic normalization to real flux in space Interface to future G4 upgrades Dose tallying in parallel geometry Geometrical biasing To improve speed for local energy deposition Analysis algorithms are ready for biasing Web Interface inside SPENVIS Internal geometry, GDML exchange format Status Perspectives Giovanni Santin - GRAS - Leuven, 5 Oct 2005

  27. Conclusions • Modular, script driven analysis package • Space users oriented, but trying to be generic • Already used in the support of a number of space missions and ground beam tests • GRAS as • Ready-to-use Geant4 tool for common analysis types • Framework for Monte Carlo analyses • Monte Carlo engine for external packages • GRAS used as framework for on-going ESA contracts • REAT_MS (QinetiQ), Geant4 usability for space applications (CAD interface, SEE analysis, Physics lists for space applications) • Open to comments / contributions for collaborative development • http://geant4.esa.int • We believe GRAS is significantly improving the Geant4 usability • Some features could be used directly by the Geant4 kernel • Related talk • Ronnie Lindberg (ESA) with extensive validation and dosimetry / physics investigations Giovanni Santin - GRAS - Leuven, 5 Oct 2005

More Related