1 / 24

First Results from CLEO-c

First Results from CLEO-c. Thomas Coan. Southern Methodist University. CLEO Collaboration. CLEO-c Physics Program. D +  +   Decays. Absolute Br (D  hadrons). e + e -   (DD). Summary. CLEO-c Physics Focus. Heavy Flavor Physics: “overcome QCD roadblock”.

teigra
Télécharger la présentation

First Results from CLEO-c

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First Results from CLEO-c Thomas Coan Southern Methodist University CLEO Collaboration • CLEO-c Physics Program • D++  Decays • Absolute Br(D  hadrons) • e+e-  (DD) • Summary

  2. CLEO-c Physics Focus Heavy Flavor Physics: “overcome QCD roadblock” • CLEO-c: precision charm absolute Br measurements Leptonic decays  decay constants Semileptonic decays Vcd, Vcs, V_CKM unitarity check, form factors Absolute D Br’s normalize B physics Test QCD techniques in c sector, apply to b sector  improved Vub, Vcb, Vtd, Vts Physics beyond SM will have nonperturbative sectors • CLEO-c: precise measurements of quarkonia spectroscopy & • decay provide essential data to calibrate theory. Physics beyond SM: where is it? • CLEO-c: D-mixing, charm CPV, charm/tau rare decays.

  3. Why Charm Threshold? • Large production , low decay multiplicity • Pure initial state (DD): “no” fragmentation • Double tag events: “no” background • Clean neutrino reconstruction • Quantum coherence: • aids D-D mixing and CPV studies

  4. CLEO-c Run Plan 2004: y(3770) – 3 fb-1 18M DD events, w/ 3.6M tagged D decays (150 times MARK III) 2005: s  4100 MeV – 3 fb-1 1.5M DsDs events, w/ 0.3M tagged Ds decays (480 times MARK III, 130 times BES) 2006: y(3100) – 1 fb-1 1 Billion J/y decays (170 times MARK III, 15 times BES II)

  5. Tagging Technology • Pure DD/DsDs production: (3770)  DD • s ~4140  DsDs • Large branching fractions (~1-15%) • High reconstruction efficiency •  High net tagging efficiency ~20% MC MC M(D)

  6. Absolute Br’s w/ Double Tags ~ Zero bkgnd in hadronic modes w/ D0 tag D0 K w/ D tag D K MC MC M(D) (GeV/c2) w/ 3 fb1 Mode s (GeV) PDG2kCLEOc (dB/B %) (dB/B%) D0K-p+ 3770 2.40.6 D+  K- p+p+ 3770 7.20.7 Ds fp 4140 251.9

  7. |VCKM|2 |fD|2 l n fDq from Leptonic Decays  ( Dq  l  )  f_Dq2 V_cq2 MC KL Ds+ mn  D+ mn w/ 3 fb-1 & 3-gen CKM unitarity: Decay Constant Reaction PDG f/f CLEO-c f/f f Ds Ds+ mn 12% 1.9% f Ds Ds+ n 33% 1.6% f D D+ mn ~50% 2.3%

  8. Br ( D P l  ) / D =  = V_cq2 |VCKM|2 d ( D P l  ) / dq2 V_cq2 f(q2)2 |f(q2)|2 Semileptonic Decays MC MC 1 fb-1 1 fb-1 D0 p l n Measuref(q2)2 Kl q2 (GeV2) U=E_miss  P_miss Mode PDG04 (B/B%) CLEOc (B/B%)  Vcd/Vcd & Vcs/Vcs 1.6% Vcd/Vcd = 5.4% (PDG04) Vcs/Vcs = 9.3% (PDG04) 3 D0 K ln 0.4 D0 pln 16 1.0 D pln 48 2.0 Ds   ln 25 3.1

  9. c X c ¯  Probing QCD • Gluons carry color charge  binding: Glueballs = gg  and Hybrids = qqg  • Radiative  decays: ideal glue factory • CLEO-c: 10 J/ decays   60M J/  X Partial Wave Analysis MC Absolute Br’s: , KK, pp, , ...  + • E.g.: fJ(2220) CLEO-c: find/debunk fJ(2220) MC MC  K K+

  10. CLEO-c Detector 93% of 4p sE/E = 2% @1GeV = 4% @100MeV B=1.0 T 83% of 4p 87% Kaon ID with 0.2% p fake @0.9GeV 93% of 4p sp/p = 0.3% @1GeV dE/dx: 5.7% p @minI Data Acquisition: Event size = 25kB Thruput  6MB/s Trigger : Tracks & Showers Pipelined Latency = 2.5 ms 85% of 4p p>1 GeV

  11. 2 l Weak Physics Strong Physics (1 - ) 2 GF m_Dqm 2 m_Dq 2 l 8 2 2 m f_Dq|Vcq| _Dq Leptonic Decays: D+  +  Br(Dq l) = Seek to measure fD+ • fD+ provides “iron post of observation” for Lattice QCD • fD+ useful for checking potential models • “Calibrated” Lattice QCD (fB/fD) + fD  fB • fB + B-mixing m’ments  |Vtd/Vts| precision

  12. 2 2 • MD = Ebeam ( pi)2   • MM2= (Ebeam E)2  ( pD  p )2 Single D Tag e+e (3770)   D+D Signal side D-Tag side  • L dt = 57 pb1 @s =  D  K+,K+, Ks, Ks, Ks • D tag side: • /K ID: dE/dx + RICH • 0 recon:  shower shape/location in CsI • Ksrecon:  kinematic fit to displaced vertex • Signal side: • 1 track from event vertex, min_I in CsI • “small” (< 250 MeV) neutral E in CsI • no reconstructed Ks • Key analysis variables:

  13. MD Distribution v. D Tag Data Data K+0 K+ Data Data Ks Ks+ Data Ks S: 28575  286 B: 8765  784

  14. (MM2)  0.025 GeV2 MM2 Distribution v. D Tag MC MC MC MC MC

  15. Check MC (MM2) w/ data: D  Ks Data  Ks++ Tag  Leptonic Decays: Signal Region   0.0240.002 GeV2 Scale MC (MM2) w/ data:  = (0.024/0.021)0.025 = 0.028 GeV2   0.0210.001 GeV2 8 evts D+  K0+

  16. Mode # of Events 0.31  0.04 0.06  0.05 0.36  0.08 Nsig Ntag negligible D+  + Br(D+  + = (3.5  1.4  0.6) x 104 D+  K+ D+  + • D0D0Background: 0.16  0.16 events fD+ = (201  41  17) MeV D+  + Background + Results Background estimates via MC • D Background: • e+e  continuum: 0.17  0.17 events  O’all Bkg: 1.07  0.25 events  1.07  1.07 events &  = 69.9% for D+ + recon. Br(D+  + = Preliminary

  17. 1 2D B = 2 S 2 w/ 2  1 : S2 D0 D0 NDD =  (DD) = 4D S2 4DL Br(D) & (DD) M’ment @ s = (3770) K+ X Single Tag Double Tag    e+ e e+ e   D0 D0 K K + + S = 2NDD B1 D = NDD B22 i.e., B &  independent

  18. Determine 5 Br’s and (e+e  D0D0) & (e+e  D+D) 2  • MBC = (Ebeam ( pi)2) Single and Double Tags • 10 Single Tag + 13 Double Tag modes D0 K+,K+0, K++ + c.c. D+ K++,Ks+ + c.c. • Event selection similar to fD+ analysis • Key analysis variables: • E= Ebeam Ei

  19. D and D fit together: same signal param’s, indep. bkg. MC Single and Double Tag Yields • N(single tags) from ML fit to M_BC • Line shape parameters from MC D0  K+ D0  K+ Data • N(double tags) from 2-D ML fit to 2-D M_BC K+0 v. K+0 Data

  20. Br(D+ K++), Br(D+  Ks+) and N(D0D0), N(D+D) Fit Results for Br(D) and (DD) • 2 fit to account for correlations btwn single/double tags, bkg • Fit Output: Br(D0 K+) , Br(D0 K+0), Br(D0 K++) • Fit Input: S.T. & D.T. yields, _tag, _bkg + errors • 2/ndof = 9.0/16, C.L. = 91.4% CLEO-c Preliminary PDG04 Br(D0  K+) = 0.039  ?  ? Br(D0  K+0) = 0.130  ?  ? Need pdg comp Br(D0  K++) = 0.081  ?  ? Br(D+  K++) = 0.098  ?  ? Br(D+  Ks +) = 0.016  ?  ? N(D0D0) = 1.98 x105 (D0D0) = 3.47  0.07  0.15 nb N(D+D) = 1.48 x105 (D+D) = 2.50  0.11  0.11 nb (DD) = 6.06  0.13  0.22 nb

  21. Summary I need nicer plots for Br(D  hadrons)

  22. Backup

  23. 1.5 T  1.0T 83% of 4p 87% Kaon ID with 0.2% p fake @0.9GeV 93% of 4p sp/p = 0.35% @1GeV dE/dx: 5.7% p @minI 93% of 4p sE/E = 2% @1GeV = 4% @100MeV CLEO III Detector  CLEO-c Detector Trigger : Tracks & Showers Pipelined Latency = 2.5 ms Data Acquisition: Event size = 25kB Thruput  6MB/s 85% of 4p p>1 GeV

  24. J/   X Inclusive  - Spectrum MC • Inclusive  -spectrum • Search for monochromatic  • E.g., 24% efficient for fJ(2220) • 10 sensitivity for narrow resonances • Modern 4 detector • Suppress hadronic bkgnd: J/X • Huge data set • Plus  and (1S) data Determine JPC and gluonic content

More Related