1 / 36

Gregory Mendell LIGO Hanford Observatory

Gravitational Waves From Neutron & Strange Quark Stars. Gregory Mendell LIGO Hanford Observatory. Supported by the National Science Foundation. http://www.ligo.caltech.edu. The Neutron Star Idea. SN 1987A.

telyn
Télécharger la présentation

Gregory Mendell LIGO Hanford Observatory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gravitational Waves From Neutron & Strange Quark Stars Gregory Mendell LIGO Hanford Observatory Supported by the National Science Foundation http://www.ligo.caltech.edu LIGO-G040443-00-W

  2. The Neutron Star Idea SN 1987A • Chandrasekhar 1931: white dwarf stars will collapse if M > 1.4 solar masses. Then what? • Chadwick 1932: discovers the neutron. • Landau 1932: suggests stars have neutron cores. • Oppenheimer & Volkoff 1939: work out NS models. • Baade & Zwicky 1934: suggest SN form NS. http://www.aao.gov.au/images/captions/aat050.html Anglo-Australian Observatory, photograph by David Malin. (http://www.jb.man.ac.uk/~pulsar/tutorial/tut/tut.html; Jodrell Bank Tutorial) LIGO-G040443-00-W

  3. Discovery of Pulsars • Bell notes “scruff” on chart in 1967. • Close up reveals the first pulsar (pulsating radio source) with P = 1.337 s. • Rises & sets with the stars: source is extraterrestrial. • LGM? • More pulsars discovered indicating pulsars are natural phenomena. • Hewish, wins 1974 Nobel Prize. www.jb.man.ac.uk/~pulsar/tutorial/tut/node3.html#SECTION00012000000000000000 A. G. Lyne and F. G. Smith. Pulsar Astronomy. Cambridge University Press, 1990. LIGO-G040443-00-W

  4. Pulsars = Neutron Stars • From the Sung-shih (Chinese Astronomical Treatise): "On the 1st year of the Chi-ho reign period, 5th month, chi-chou (day) [1054 AD], a guest star appeared…south-east of Tian-kuan [Aldebaran].(http://super.colorado.edu/~astr1020/sung.html) • Pacini 1967: neutron stars power the crab nebula • Gold 1968: pulsars are rotating neutron stars. • orbital motion • oscillation • rotation http://antwrp.gsfc.nasa.gov/apod/ap991122.html Crab Nebula: FORS Team, 8.2-meter VLT, ESO LIGO-G040443-00-W

  5. Pulsars Seen and Heard Play Me (Vela Pulsar) http://www.jb.man.ac.uk/~pulsar/Education/Sounds/sounds.html Jodrell Bank Observatory, Dept. of Physics & Astronomy, The University of Manchester (Crab Pulsar) http://www.noao.edu/image_gallery/html/im0565.html Crab Pulsar: N.A.Sharp/NOAO/AURA/NSF LIGO-G040443-00-W

  6. Why Neutron Stars? • Fastest pulsar spins 642 times per seconds; R < 74 km • Thermal observations and theory suggest R ~ 5-15 km Masses ~ 1.4 Solar Masses www.physik.uni-muenchen.de/sektion/suessmann/astro/cool/ S. E. Thorsett and D. Chanrabarty, astro-ph/9803260 LIGO-G040443-00-W

  7. The back of the envelope please… Don’t take this the wrong way… 1.4 Solar Masses 1.4(1.99 × 1033 g) ------------------------ = -------------------- 10 km Sphere 4/3(106 cm) 3 Average density = 6.7 × 1014 g/cm 3 Mass neutron 1.67 × 10-24 g ------------------------ = -------------------- Volume neutron 4/3  (10-13 cm) 3 = 4.0 × 1014 g/cm 3 (billion tons/teaspoon) … but parts of you are as dense as a neutron star. p + e  n +e (inverse beta and beta decay) p + e = n (beta equilibrium) np = ne (charge neutrality) Nuclear density: 95% n, 5% p & e Seen: SN 1987A! LIGO-G040443-00-W

  8. More on Pulsars Known: 1000+ Unknown: up to 100,000 in the Milkyway. http://online.itp.ucsb.edu/online/neustars00rmode/kaspi/oh/05.html; Vicky Kaspi McGill University, Montreal Canada Cosmic lighthouses with terra-gauss magnetic fields ! D. Page http://www.astroscu.unam.mx/neutrones/home.html Respun to 642 Hz! In theory up to 2 kHz. LIGO-G040443-00-W http://astrosun2.astro.cornell.edu/academics/courses/astro201/pulsar_graph.htm

  9. What else is seen? HMXBs LMXBs http://www.astroscu.unam.mx/neutrones/home.html Magnetars Pulsar Glitches http://www.jb.man.ac.uk/~pulsar/tutorial/tut/tut.html http://antwrp.gsfc.nasa.gov/apod/ap980527.html Robert Mallozzi (UAH, MSFC) LIGO-G040443-00-W

  10. Now it gets interesting… • Fermi Temp = 1012 K • NS born at 1011 K, cools below 109 K within a year; BCS superfluids form. • Cools to 106 K over 107 K yrs. • NS are compact “cold” degenerate objects; GR & QM required to understand. D. Page http://www.astroscu.unam.mx/neutrones/home.html LIGO-G040443-00-W

  11. …and strange… http://chandra.harvard.edu/resources/illustrations/neutronstars_4.html NASA/CXC/SAO LIGO-G040443-00-W

  12. … and hyper-stranger still! LIGO-G040443-00-W

  13. Strange Stars in the News LIGO-G040443-00-W

  14. Recent Papers LIGO-G040443-00-W

  15. Some Of The Big Questions? • What is the NS/SQS max. mass; min radius? (1.4-3.5 M? R = ?) • How fast can NS/SQS spin (up to 2 kHz?) and what controls their spin cycles? • What are the final states of matter before collapse to BH, i.e., what’s inside these stars, really? • Are quark nuggets hitting the Earth? (Ice-9 Scenerios?) J. M. Lattimer & M. Prakash, astro-ph/0405262 LIGO-G040443-00-W

  16. Laser Interferometer Gravitational-wave Observatories Gravitational-wave Strain: LIGO is a lab looking for direct detection of GW’s. LIGO is an observatory, “listening” for GW’s cosmic spacetime vibrations. Figures: K. S. Thorne gr-qc/9704042; D. Sigg LIGO-P980007-00-D LIGO-G040443-00-W

  17. Wobbling star Accreting star “Mountain” on star Oscillating star Continuous Periodic Gravitational-Wave Sources Free Precession Wobble Angle  Triaxial Ellipsoid: Ellipticity  Mode with Saturation Amplitude A LMXB: e.g., Sco X-1: balance GW torque with accretion torque. A. Vecchio on behalf of the LIGO Scientific Collaboration : GR17 – 22nd July, 2004 LIGO-G040443-00-W

  18. The back of the envelope please… Approximate forms of the Quadrupole Formula • Triaxial ellipsoid: h ~ (G/c4) MR24frot2/r ~ 10–26 (for ellipticity ~ 10–6, frot = 200 Hz, M = 1.4 M, R = 106 cm, r = 1 kpc = 3 1021 cm) • Precession: h ~ (G/c4) sin (2)  MR2frot2/r ~ 10-27 (for ellipticity ~ 10-6; wobble angle  = /4, etc…) • LMXB Sco-X1: h ~ 10-26 (balance GW torque with accretion torque) • R-modes: h ~ (G/c4) MA2R2 (16/9) frot2/r ~ 10–26 ( for saturation amplitude A ~ 10–3, etc…) • Pulsar Glitch h ~ (G/c4) MA2R2frot2/r ~ 10 –32 ( for glitch amplitude A ~ 10–6, etc…) LIGO-G040443-00-W

  19. LSC Period/CW Search GroupSearch Techniques • ~ 30+ members of the LIGO Science Collaboration. • Has developed Coherent & Incoherent Search Methods • Known, Targeted,and All Sky Searches are underway. LIGO-G040443-00-W

  20. Sensitivity Curves The r-mode saturation amplitude was thought to be much larger in 2000 Figure: P. Brady ITP seminar summer 2000 LIGO-G040443-00-W

  21. Coherent Power vs. Tobs LIGO-G040443-00-W

  22. Incoherent Power vs. Tobs LIGO-G040443-00-W

  23. Phase Modulation LIGO-G040443-00-W

  24. Frequency Modulation • The frequency is modulated by the intrinsic frequency evolution of the source and by the doppler shifts due to the Earth’s motion • The Doppler shifts are important for observation times Schutz & Papa gr-qc/9905018; Williams and Schutz gr-qc/9912029; Berukoff and Papa LAL Documentation LIGO-G040443-00-W

  25. Amplitude Modulation Figure: D. Sigg LIGO-P980007-00-D LIGO-G040443-00-W

  26. Maximum Likelihood Likelihood of getting data x for model h for Gaussian Noise: Chi-squared Minimize Chi-squared = Maximize the Likelihood LIGO-G040443-00-W

  27. Coherent Match Filtering Jaranowski, Krolak, & Schutz gr-qc/9804014; Schutz & Papa gr-qc/9905018; Williams and Schutz gr-qc/9912029; Berukoff and Papa LAL Documentation LIGO-G040443-00-W

  28. The StackSlide Search Bins with frequency domain data, e.g., from SFTs or F-statistic. • An incoherent search method that stacks and slides power to search for periodic sources. (P. Brady & T. Creighton Phys. Rev. D61 (2000) 082001; gr-qc/9812014.) • The periodic search is computationally bound. A hierarchical approach that combines coherent & incoherent methods is needed to optimize sensitivity. • Sources like LXMBs with short coherence times (~ 2 weeks) require incoherent methods. • Mendell and Landry are developing the StackSlide Search for the CW group. (The group also uses Hough Transforms and Power Flux, for incoherent searches.) • Stack the power. • Slide to correct for spindown/doppler shifts. • Sum and search for significant peaks. LIGO-G040443-00-W

  29. Validation: Fake Pulsar vs Fake Instrument Line LIGO-G040443-00-W

  30. Sky Distribution of PowerFake Pulsar and Fake Noise: LIGO-G040443-00-W

  31. Sky Distribution of PowerFake Instrument Line and Noise LIGO-G040443-00-W

  32. Sky Distribution of PowerFake Noise Only: LIGO-G040443-00-W

  33. StackSlide Pipeline Compute PSDs from SFTs Normalize PSDs Select template Veto Instrument Lines Slide Stacks and SUM Veto on Coincidence Find peaks above threshold Veto SNR does not grow as T Veto peak based on width Line Removal Veto SFTs SFTs are generated only once Parameter space metric placement Raw Data Input a band from SFTs Normalize SFTs Uniform placement Template placement Template placement Compute F-statistic for each point in the course grid Output event No Monte Carlo Yes Detection candidate Set UL from LE LIGO-G040443-00-W

  34. Statistics Gaussian Noise Rayleigh Dist. 2 variable, with 2 degrees freedom 2 Distribution LIGO-G040443-00-W

  35. Statistics: False Alarm Rate; False Dismissal Rate and UL from LE LIGO-G040443-00-W

  36. PSR J1939+2134 P = 0.00155781 s fGW = 1283.86 Hz dP/dt = -1.0511 10-19 s/s D = 3.6 kpc Result: S1 Coherent Search -- GEO -- L 2km -- H 4km -- L 4km S1 sensitivities <h0> • ho<1.4x10-22 constrains ellipticity < 2.7 x 10-4 (M=1.4 Msun, r=10 km, R=3.6 kpc) B Allen and G Woan on behalf of the LIGO Scientific Collaboration : Amaldi 9 July, 2003. LIGO-G040443-00-W

More Related