1 / 48

Total Synthesis of (-)- Acetylaranotin : A 40-Year Journey

Total Synthesis of (-)- Acetylaranotin : A 40-Year Journey. Malay Doshi. Epidithiodiketopiperazines (ETPs): A Large Class of Compounds. Isolated 40 years ago Fungal metabolities Bio active compounds Viral RNA Polymerase inhibitor, anticancer, anti-proliferative.

thanh
Télécharger la présentation

Total Synthesis of (-)- Acetylaranotin : A 40-Year Journey

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Total Synthesis of (-)-Acetylaranotin:A 40-Year Journey Malay Doshi

  2. Epidithiodiketopiperazines (ETPs): A Large Class of Compounds • Isolated 40 years ago • Fungal metabolities • Bio active compounds • Viral RNA Polymerase inhibitor, anticancer, anti-proliferative Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  3. Structural Features Of Common ETPs

  4. Structural Features Of Common ETPs

  5. Looking To Nature For Inspiration (+)-11,11’-Dideoxyverticillin A • Biomimetic synthesis undertaken by Movassagi group • Biosynthesis needed to be understood • Structure is a dimer and has disulfide linkages Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  6. Biosynthesis Of Dimer • Formed via tryptamine oxidation • Does not provide full stereocontrol Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  7. Alternate Proposal For Dimerization Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  8. Biosynthesis Of Disulfide Linkage

  9. Biosynthesis Of Disulfide Linkage • Evidence from biosynthetic gene cluster • Cysteine residue is common source of sulfur Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  10. Biosynthesis Of Disulfide Linkage • Pyridoxal phosphate is a key cofactor Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  11. Final Proposal Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  12. Biomimetic Synthesis Of Dimer Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  13. Biomimetic Synthesis Of Dimer Kim, J., Ashenhurst, J., Movassaghi, M., Science, 2009, 238-241

  14. Can We Always Use Biosynthesis As A Starting Point? • Gives a “proven” approach • Johnson’s synthesis to Progesterone • What works for nature may not work for us • Enzymes can do reactions that we can not • Dimerization had to be changed • Source of sulfur had to be changed • Biosynthesis is simply unknown • Can be an arduous process to figure out

  15. What If Biosynthesis Is Not Known? • Similar cores • Clive and his group attempt the synthesis Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  16. Synthesis Of The Core Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  17. Synthesis Of The Core Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  18. Synthesis Of The Core Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  19. Synthesis Of The Core Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  20. Synthesis Of The Core Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  21. Synthesis Of The Core • Core is synthesized; disulfide is incomplete • Overall: linear, 23 steps, 0.4% yield Peng, J., Clive, D., J. Org. Chem., 2009, 74, 513-519

  22. ReismanReterosynthesis • Key late stage S-S coupling Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  23. Synthesis Of Monomer Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  24. Synthesis Of Monomer

  25. Synthesis Of Monomer Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  26. Synthesis Of Monomer Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  27. Synthesis Of Dimer Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  28. Making The S-S bond • What are our choices? • Acidic, basic, radical or enzymes??

  29. S-S Bonds In Biology

  30. General Approaches To Sulfenylation • Reagent examples: O2, I2, DEAD, SO2Cl2 etc… • Can tolerate many functional groups Witt, D., Synthesis, 2008, 16, 2491-2509

  31. Using 1-Chlorobenzotriazole • SN2 displacement • Works well for unsymmetrical thiols • Long reaction times and generation of unwanted homo dimer (tough to remove) • Avoided by using correct equivalence • One pot Hunter, R.; Caira, M., Stellenboom, N. J. Org. Chem. 2006, 71, 8268

  32. From OrganophosphorusSulfenyl Halides • Starting material is hard to prepare, purify and is prone to fast degradation • Used for unsymmetrical thiols • Extremly specific for thiols • OH, NH2, carboxyl do not need to be protected • Reaction times are rather small Antoniow, S., Witt, D. Synthesis 2007, 363

  33. From Thiosulfates • Used for symmetericalthiols • Used for glycosidation • Practical and useful in kilo scale Davis, B. G.; Ward, S. J.; Rendle, P. M. Chem. Commun., 2001, 189

  34. What Are The Issues? • Sensitive to oxidative or acid conditions • Need basic conditions

  35. From Elemental Sulfur • First proposal was by Schmidt Ohler, E., Poisel, H., Tataruch, F., Schmidt, U., Chem. Ber., 1972,105, 635-641

  36. Epicoccin G Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., J. Am. Chem. Soc., 2011, 133, 8150-8153

  37. Epicoccin G Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., J. Am. Chem. Soc., 2011, 133, 8150-8153

  38. Epicoccin G Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., J. Am. Chem. Soc., 2011, 133, 8150-8153

  39. Sulfenylation Of 2,5-Diketopiperazines • Syn or anti accommodate well • Polycyclic work well • Mixture of products Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., Angew. Chem. Int. Ed., 2011, DOI: 10.1002/anie.201107623

  40. Sulfenylation Of 2,5-Diketopiperazines • Synor anti accommodated well • Polycyclic work well • Mixture of products Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., Angew. Chem. Int. Ed., 2011, DOI: 10.1002/anie.201107623

  41. Mechanism Of Sulfenylation Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., Angew. Chem. Int. Ed., 2011, DOI: 10.1002/anie.201107623

  42. Mechanism Of Sulfenylation • Initial mixing of NaHMDS and S8 • HRMS shows: major signal at m/z C12H36N2O2S4H+ [M+H+] 449.0908 • (TMS)2N-SSSS-N(TMS)2 • NMR after flash chromatography provided further evidence • 1H NMR (CDCl3, 600 MHz): δ=0.26 ppm • 13C NMR (CDCl3, 600 MHz): δ=2.4 ppm Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., Angew. Chem. Int. Ed., 2011, DOI: 10.1002/anie.201107623

  43. Mechanism Of Sulfenylation Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., Angew. Chem. Int. Ed., 2011, DOI: 10.1002/anie.201107623

  44. Mechanism Of Sulfenylation Totokotosopoulos, S., Giuere, D., Sun, Y., Sarlah, D., Nicolau, K. C., Angew. Chem. Int. Ed., 2011, DOI: 10.1002/anie.201107623

  45. Completion Of Acetylaranotin • Overall: Convergent, 18 steps, 0.45% yield Codelli, J., Puchlopek, A., Reisman, S., J. Am. Chem. Soc., 2011, DOI: 10.1021/ja209354e

  46. Summary And Conclusion • Structural features of Acetylaranotin • Three fused rings and disulfide linkage • Biomimetic synthesis of 11,11’-dideoxyvertillicin A • Biosynthesis of dimerization via tryptophan • Biosynthesis of disulfide via iminium ion • Synthesis of the core of Acetylaranotin • Linear, 23 steps and 0.4% yield

  47. Summary And Conclusion • Synthesis of Acetylaranotin • Convergent, 18 steps, 0.45% yield • Basic conditions used for sulfenylation • Elemental sulfur and NaHMDS • Used during synthesis of Epiconnin G

  48. Acknowledgements Professor Robert N. Ben • Dr. Mathieu Leclère • ChantelleCapicciotti • Anna Balcerzak • Devin Tonelli • Evan Perley-Robertson • Jennie Briard • Matt Alteen • Alan Grant

More Related