1 / 24

Prof. Swarat Chaudhuri

COMP 482: Design and Analysis of Algorithms. Prof. Swarat Chaudhuri. Spring 2012 Lecture 16. 6.3 Segmented Least Squares. Segmented Least Squares. Least squares. Foundational problem in statistic and numerical analysis.

thelmadunn
Télécharger la présentation

Prof. Swarat Chaudhuri

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COMP 482: Design and Analysis of Algorithms Prof. Swarat Chaudhuri Spring 2012 Lecture 16

  2. 6.3 Segmented Least Squares

  3. Segmented Least Squares • Least squares. • Foundational problem in statistic and numerical analysis. • Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn). • Find a line y = ax + b that minimizes the sum of the squared error: • Solution. Calculus  min error is achieved when y x

  4. Segmented Least Squares • Segmented least squares. • Points lie roughly on a sequence of several line segments. • Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with • x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x). • Q. What's a reasonable choice for f(x) to balance accuracy and parsimony? goodness of fit number of lines y x

  5. Segmented Least Squares • Segmented least squares. • Points lie roughly on a sequence of several line segments. • Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with • x1 < x2 < ... < xn, find a sequence of lines that minimizes: • the sum of the sums of the squared errors E in each segment • the number of lines L • Tradeoff function: E + c L, for some constant c > 0. y x

  6. Dynamic Programming: Multiway Choice • Notation. • OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. • e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj. • To compute OPT(j): • Last segment uses points pi, pi+1 , . . . , pj for some i. • Cost = e(i, j) + c + OPT(i-1).

  7. Segmented Least Squares: Algorithm • Running time. O(n3). • Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using previous formula. INPUT: n, p1,…,pN , c Segmented-Least-Squares() { M[0] = 0 for j = 1 to n for i = 1 to j compute the least square error eij for the segment pi,…, pj for j = 1 to n M[j] = min 1  i  j (eij + c + M[i-1]) return M[n] } can be improved to O(n2) by pre-computing various statistics

  8. 6.6 Sequence Alignment

  9. String Similarity • How similar are two strings? • ocurrance • occurrence o c u r r a n c e - o c c u r r e n c e 5 mismatches, 1 gap o c - u r r a n c e o c c u r r e n c e 1 mismatch, 1 gap o c - u r r - a n c e o c c u r r e - n c e 0 mismatches, 3 gaps

  10. Edit Distance • Applications. • Basis for Unix diff. • Speech recognition. • Computational biology. • Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970] • Gap penalty ; mismatch penalty pq. • Cost = sum of gap and mismatch penalties. C T G A C C T A C C T - C T G A C C T A C C T C C T G A C T A C A T C C T G A C - T A C A T TC + GT + AG+ 2CA 2+ CA

  11. Sequence Alignment • Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find alignment of minimum cost. • Def. An alignment M is a set of ordered pairs xi-yj such that each item occurs in at most one pair and no crossings. • Def. The pair xi-yj and xi'-yj'cross if i < i', but j > j'. • Ex:CTACCG vs. TACATG.Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6. x1 x2 x3 x4 x5 x6 C T A C C - G - T A C A T G y1 y2 y3 y4 y5 y6

  12. Sequence Alignment: Problem Structure • Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. • Case 1: OPT matches xi-yj. • pay mismatch for xi-yj + min cost of aligning two stringsx1 x2 . . . xi-1 and y1 y2 . . . yj-1 • Case 2a: OPT leaves xi unmatched. • pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj • Case 2b: OPT leaves yj unmatched. • pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

  13. Sequence Alignment: Algorithm • Analysis. (mn) time and space. • English words or sentences: m, n  10. • Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array? • (Solution: sequence alignment in linear space) Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) { for i = 0 to m M[0, i] = i for j = 0 to n M[j, 0] = j for i = 1 to m for j = 1 to n M[i, j] = min([xi, yj] + M[i-1, j-1],  + M[i-1, j],  + M[i, j-1]) return M[m, n] }

  14. Q1: Least-cost concatenation • You have a DNA sequence A of length n; you also have a “library” of shorter strings each of length m < n. • Your goal is to generate a concatenation C of strings B1,…,Bk in the library that the cost of aligning C to A is as low as possible. You can assume a gap cost δ and a mismatch cost αpq for determining the cost of alignment.

  15. Answer • Let A[x:y] denote the substring of A consisting of its symbols from position x to position y. • Let c(x,y) be the cost of optimally aligning A[x:y] to any string in the library. • Let OPT(j) be the alignment cost for the optimal solution on the string A[1:j]. • OPT(j) = mint <j c(t,j) + OPT(t – 1) for j ≥ 1 • OPT(0) = 0 • [Essentially, t is a “breakpoint” where you choose to use a new library component.]

  16. 6.4 Knapsack Problem

  17. Q2: Knapsack Problem • Knapsack problem. • Given n objects and a "knapsack." • Item i weighs wi > 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. • Ex: { 3, 4 } has value 40. • Greedy: repeatedly add item with maximum ratio vi / wi. • Ex: { 5, 2, 1 } achieves only value = 35  greedy not optimal. Item Value Weight 1 1 1 2 6 2 W = 11 3 18 5 4 22 6 5 28 7

  18. Dynamic Programming: False Start • Def. OPT(i) = max profit subset of items 1, …, i. • Case 1: OPT does not select item i. • OPT selects best of { 1, 2, …, i-1 } • Case 2: OPT selects item i. • accepting item i does not immediately imply that we will have to reject other items • without knowing what other items were selected before i, we don't even know if we have enough room for i • Conclusion. Need more sub-problems!

  19. Dynamic Programming: Adding a New Variable • Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w. • Case 1: OPT does not select item i. • OPT selects best of { 1, 2, …, i-1 } using weight limit w • Case 2: OPT selects item i. • new weight limit = w – wi • OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  20. Knapsack Problem: Bottom-Up • Knapsack. Fill up an n-by-W array. Input: n, w1,…,wN, v1,…,vN for w = 0 to W M[0, w] = 0 for i = 1 to n for w = 1 to W if (wi > w) M[i, w] = M[i-1, w] else M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} return M[n, W]

  21. 0 1 2 3 4 5 6 7 8 9 10 11  0 0 0 0 0 0 0 0 0 0 0 0 { 1 } 0 1 1 1 1 1 1 1 1 1 1 1 { 1, 2 } 0 1 6 7 7 7 7 7 7 7 7 7 { 1, 2, 3 } 0 1 6 7 7 18 19 24 25 25 25 25 { 1, 2, 3, 4 } 0 1 6 7 7 18 22 24 28 29 29 40 { 1, 2, 3, 4, 5 } 0 1 6 7 7 18 22 28 29 34 34 40 Item Value Weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 Knapsack Algorithm W + 1 n + 1 OPT: { 4, 3 } value = 22 + 18 = 40 W = 11

  22. Knapsack Problem: Running Time • Running time. (n W). • Not polynomial in input size! • "Pseudo-polynomial." • Decision version of Knapsack is NP-complete. [Chapter 8] • Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

  23. Q3: Longest palindromic subsequence • Give an algorithm to find the longest subsequence of a given string A that is a palindrome. • “amantwocamelsacrazyplanacanalpanama”

  24. Q3-a: Palindromes (contd.) • Every string can be decomposed into a sequence of palindromes. • Give an efficient algorithm to compute the smallest number of palindromes that makes up a given string.

More Related