1 / 31

J.C.Arteaga – Attenuation lengths /KASCADE-Grande ISVHECRI 2014

Confronting EPOS-LHC predictions on the charged particle and muon attenuation lengths of EAS with KASCADE-Grande data. J.C. Arteaga Velázquez for the KASCADE-Grande Collaboration Institute of Physics and Mathematics , Universidad Michoacana Morelia, Michoacan , Mexico.

tiana
Télécharger la présentation

J.C.Arteaga – Attenuation lengths /KASCADE-Grande ISVHECRI 2014

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Confronting EPOS-LHC predictionsonthechargedparticle and muon attenuationlengths of EAS with KASCADE-Grande data J.C. Arteaga Velázquez forthe KASCADE-Grande Collaboration Institute of Physics and Mathematics, Universidad Michoacana Morelia, Michoacan, Mexico Structure of thetalk: Introduction KASCADE experiment KASCADE-Grande experiment Analyses Results Summary J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 1

  2. 1) Introduction 1. Whatistheorigin of features in spectrum? 2. Where do they come from? 3. Whatistheirnature? 4. How do theyget accelerated? 5. Are therenearby sources? 6. Whereisthegalactic toextragalactic transition? F(E) = E- γ Concavity  = -2.7 PDG 2013  = -3.1  = -2.9  ≈ -3.3  = -2.6 LHC(pp) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 2

  3. KarlsruheShowerCore and ArrayDetector Karlsruhe, Germany Study: - Origin of theknee - Composition - Energyspectrum - Arrivaldirection

  4. KarlsruheShowerCore and ArrayDetector • Components: • - Groundarray (200 x 200 m2) • + 252 e/γ scintillatordetectors • + 192 μ detectors • - Central detector • + Calorimeter • + μ detectors • - Muon tracking detector • Observables: • Ne, Nμ, Nhadron • E = 1014 – 1017 eV J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 5

  5. 2) KASCADE experiment Unfolding of energyspectrafrom KASCADE data KascadeColl, Astrop. Phys. 47 (2013) 54 QGSJETII-02 QGSJETII-02 • PeVKnee in all-particlespectrumduetoknees of light components: • -H knee: E = 4 ·1015 eV • -He knee: E = 7 ·1015 eV • -C knee: E = 20 ·1015 eV • He & C almostequallyabundant. • KASCADE measurements of Fe • nucleionly up to < 1017 eV. • Whereisthe Fe knee? Knee position  Z? J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 5

  6. 3) KASCADE-Grande experiment KASCADE-Grande detector (December 2003 – November 2012) E = 1016 - 1018 eV • Area: 0.5 km2 • 37x10 m2 scintillatordetec. • Distance: 140 m 4 KASCADE Observables -Ne -Nμ, ρμ, τμ -Nch, ρch, τch -Nh, ΣEh -Hμ, η W. D. Apel, NIMA620, 202 (2010) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 6

  7. 3) KASCADE-Grande experiment KASCADE-Grande detector (December 2003 – November 2012) E = 1016 - 1018 eV MTD LOPES • Tunnel of • 5.5 m x 48 m • 3 layers of • streamer • tubes. • 128 m2/layer • 30 dipole • antennas • Triggered by • KASCADE- • Grande • 40 – 80 MHz • Area: 0.5 km2 • 37x10 m2 scintillatordetec. • Distance: 140 m 4 KASCADE Observables -Ne -Nμ, ρμ, τμ -Nch, ρch, τch -Nh, ΣEh -Hμ, η W. D. Apel, NIMA620, 202 (2010) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 6

  8. 3) KASCADE-Grande experiment KASCADE-Grande detector (December 2003 – November 2012) E = 1016 - 1018 eV MTD LOPES • Tunnel of • 5.5 m x 48 m • 3 layers of • streamer • tubes. • 128 m2/layer • 30 dipole • antennas • Triggered by • KASCADE- • Grande • 40 – 80 MHz • Area: 0.5 km2 • 37x10 m2 scintillatordetec. • Distance: 140 m 4 KASCADE Nμ: Total μ ‘s E > 230 MeV; Nch: Total chargedparticles E > 3MeV; W. D. Apel, NIMA620, 202 (2010) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 6

  9. 3) KASCADE-Grande experiment Energyspectrum: K-method • Compositionindependent • Performedfordifferentzenithanglebinsindependently of eachother KASCADE-Grande Coll., PRD87 (2013) W.D.Apel, Astrop. Phys. 36 (2012) 183 QGSJETII-02 Heavy (electronpoor) Light (electronrich) QGSJETII-02 J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 7

  10. 3) KASCADE-Grande experiment Energyspectrum: K-method W.D.Apel, Astrop. Phys. 36 (2012) 183 Correctedformigrationeffects QGSJETII-02 Concavity New knee J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 8

  11. 3) KASCADE-Grande experiment QGSJETII-02 Heavy component >3.5 σ • Dominant, it shows a knee at • Responsiblefor new knee in • allparticleenergyspectrum • Change in spectralindex: All KASCADE-Grande Coll., PRD87 (2013) Heavy J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 9

  12. 3) KASCADE-Grande experiment QGSJETII-02 Heavy component >3.5 σ • Dominant, it shows a knee at • Responsiblefor new knee in • allparticleenergyspectrum • Change in spectralindex: All KASCADE-Grande Coll., PRD87 (2013) Heavy Light Light component 5.8 σ • Shows anankle → Recovery • Responsibleforgalacticto • extragalactictransition? • Change in spectralindex: J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 9

  13. 3) KASCADE-Grande experiment QGSJETII-02 Heavy component >3.5 σ • Shows a knee at • Responsiblefor new knee in • allparticleenergyspectrum • Change in spectralindex: All KASCADE-Grande Coll., PRD87 (2013) Heavy γ2 γ1 * Light Light component 5.8 σ • Shows anankle at • Responsibleforgalacticto • extragalactictransition? • Change in spectralindex: * Theγ2 of heavy group≈γ1 of light group do theyhavethesameorigin? * J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 9

  14. 3) KASCADE-Grande experiment All-particleenergyspectrum Heavy massgroupspectrum QGSJETII-02 QGSJETII-04 SIBYLL 2.1 EPOS 1.99 KASCADE Grande Coll., Nucl. Phys. B (Proc. Suppl.), tobepublished KASCADE Grande Coll., Adv. in Space R. (2013) Main results are independent of both the method and the model: -) Shape of individual spectra is retained J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 10

  15. 3) KASCADE-Grande experiment Energyspectrum: Deconvolution θ < 18o Problem: FindEand Aof primaryCRsfromNch and N. ReconstructionPrecision Efficiency Air showerfluctuations KASCADE-Grande Coll., Astropart. Phys. 47 (2013) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 11

  16. 3) KASCADE-Grande experiment Ironknee (E ≈ 80 PeV) Consistentwith position of break-off in heavy kneefrom K-method He+C+Si H Fe QGSJETII 02 KASCADE-Grande Coll., Astropart. Phys. 47 (2013) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 12

  17. 3) KASCADE-Grande experiment Energyspectrumfrom S(500) Mean lnAfromμpseudorapidities See G. Toma’s Poster See P. Luczak’sTalk J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 13

  18. 3) KASCADE-Grande experiment Work in progress Combined KASCADE/KASCADE-Grande energyspectrum E = 1014-1018 eV. Test of hadronicinteractionmodels. Anisotropystudies. Limits of gamma-ray flux. Radio analysiswith LOPES & CROME. 6. KASCADE CosmicRay Data Center. A. Haungs, ICRC 2013 A. Chiavassa, ICRC 2013 1st harmonic E-W technique J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 14

  19. 4) Attenuationlengths • Goal: • To test hadronicinteractionmodels: QGSJETII-02/04, EPOS 1.99/LHC, SIBYLL 2.1 at veryhighenergieswith KASCADE-Grande. • Employ EAS data onmuons & chargedparticles • Strategy: • Analyzezenithangledependence of NμandNchin theatmosphere. •  Attenuationlengths • Compare predictions of hadronicinteractionmodelsagainst experimental estimations. •  Use MC predictionsforProtons and Ironnuclei J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 15

  20. 4) Analyses • Data sample: • December 2003 – November 2012 • Effectiveobservation time: 1434 days • Selectioncuts: • Central area: 370 x 520 m2. •  < 40o (N ≥ 3.98 x104). • No experimental problems. • Stable DAQ. • All muon clustersworking. Exposure: J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 16

  21. 4) Analyses • MC sample: • QGSJETII-02/04 • EPOS 1.99/LHC • SIBYLL 2.1 * • Simulatedspectra: • Purecomposition: • H, He, C, Si, Fe • Mixedcomposition • (primaryelementsonequal • abundances) • Eγ, γ= -2 • reweightedtohave • γ = -2.8, -3, -3.2 Fulllefficiency: log10 (E/GeV) ~ 6.8 - 7.2 Threshold: log10 (Nμ) ~ 4.8 - 5.2 *Bandstakeintoaccountvariationamongdifferentmodels J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 17

  22. 4) Analyses QGSJET II-02 3-5% * * N NAccuracy (%) 15% Mean accuracy (in region of full efficiency) • δNμ < 20% • δNch < 20% • δθ ~ 0.4° *Bandstakeintoaccountvariationamongdifferentmodels J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 18

  23. 4) Analyses * * * * Allmuon data iscorrectedforsystematicerrors(using a correctionfunctionderivedfrom QGSJETII-02) *Bandstakeintoaccountvariationamongdifferentmodels J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 19

  24. 4) Analyses ConstantIntensityCutMethod • Getattenuation curves. • Applya global fittogetΛμ. 1 2 • Applycutsat fixedfrequencies. J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 20

  25. 5) Results KASCADE-Grande data Syst.& Stat. errors included MC (CORSIKA/FLUKA): γ = -2.8, -3.0, -3.2 H, Fe and mixed composition Syst.& Stat. errors included * Discrepancies between MC and experimental data *For EPOS-LHC results are preliminary J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 21

  26. 5) Results Whatweknow up tonow: Statistical and systematicuncertainties do notexplainthedifference Maincontributionstosystematic error of measuredvalue: J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 22

  27. 5) Results Whatweknow up tonow: Statistical and systematicuncertainties do notexplainthedifference Othersystematicerrorsderivedfrom MC studies J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 23

  28. 5) Results A. Yushkov j.EPJ W. of Conf. 53, PAO 2013 KASCADE-Grande Auger • Observeddifferencesbetweenobserved and predictedΛμmayimply • more muons in experimental data at highzenithanglesthan in simulations. • ThatmaybecorrelatedwithAuger´smuon deficitproblem at higher • energies. J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 24

  29. 5) Results KASCADE-Grande data: Systematics on Nch (calculated from MC data) increase lower error limit. Better agreement between MC and experimental data *For EPOS-LHC results are preliminary J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 25

  30. 6) Summary KASCADE-Grande results on Nμ and Nch attenuation lengths: • At E=1016-1018eV, none of the hadronic interaction models (QGSJET II, EPOS 1.99, SIBYLL 2.1, QGSJETII-04, EPOS-LHC) is able to describe the Nμ(θ) data of KASCADE-Grande consistently. • The measured Λμis bigger than the MC values. • At high zenith angles more muonsare observed in the experiment than in MC simulations. • The measured Λchis in better agremeent with MC predictions. • Results from EPOS-LHC for Λμand Λch are closer to the experimental observations than the ones from other hadronic interaction models. J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 26

  31. Thankyou!

More Related