1 / 21

Brahms: Forward Physics at RHIC

T2. FS: 6 deg 0.8 msr. T1. Dipole Magnets. MRS: 90 deg 6.5 msr. MTPC1. MTPC2. Brahms: Forward Physics at RHIC. The BRAHMS Collaboration. I.G. Bearden 7 , D. Beavis 1 , C. Besliu 10 , Y. Blyakhman 6 , J.Brzychczyk 4 , B. Budick 6 ,

tibor
Télécharger la présentation

Brahms: Forward Physics at RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. T2 FS: 6 deg 0.8 msr T1 Dipole Magnets MRS: 90 deg 6.5 msr MTPC1 MTPC2 Brahms: Forward Physics at RHIC Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  2. The BRAHMS Collaboration I.G. Bearden7, D. Beavis1, C. Besliu10, Y. Blyakhman6, J.Brzychczyk4, B. Budick6, H. Bøggild7 ,C. Chasman1, C. H. Christensen7, P. Christiansen7, J.Cibor4, R.Debbe1, E. Enger12, J. J. Gaardhøje7, M. Germinario7, K. Grotowski4, K. Hagel8, O. Hansen7, A.K. Holme12, H. Ito11, E. Jakobsen7, A. Jipa10, J. I. Jørdre10, F. Jundt2,C.E.Jørgensen7, R. Karabowicz4, T. Keutgen9, E. J. Kim5, T. Kozik3, T.M.Larsen12, J. H. Lee1, Y. K.Lee5, G. Løvhøiden2, Z. Majka3, A. Makeev8, E. McBreen1, M. Mikkelsen12, M. Murray8, J. Natowitz8, B.S.Nielsen7, J. Norris11, K. Olchanski1, J. Olness1, D. Ouerdane7, R.Planeta4, F. Rami2, D. Roehrich9, B. H. Samset12, D. Sandberg7, S. J. Sanders11, R.A.Sheetz1, Z.Sosin3, P. Staszel7, T.S. Tveter12, F.Videbæk1, R. Wada8, A.Wieloch3, and I. S. Zgura10 1Brookhaven National Laboratory, USA, 2IReS and Université Louis Pasteur, Strasbourg, France 3Jagiellonian University, Cracow, Poland, 4Institute of Nuclear Physics, Cracow, Poland 5Johns Hopkins University, Baltimore, USA, 6New York University, USA 7Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Denmark 8Texas A&M University, College Station. USA, 9University of Bergen, Norway 10University of Bucharest, Romania,11University of Kansas, Lawrence,USA 12 University of Oslo Norway Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  3. FOWARD 1<h<3.6 GLOBAL MRS -0.5<h<1 Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  4. Silicon Strips Plastic Scintillator Tiles Global detectors BB : Provide vertex and start time for TOF (and forward multiplicity) MA : Provide multiplicity / centrality of collision Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  5. Multiplicity at from MA and BB BRAHMS Preliminary 0-5% 5-10% 4630 ± 370 charged particles produced for 0-5 % central. 21 % increase over 130 GeV dNch/dη (η=0) = 625 ± 55(syst.) 14% increase over 130 GeV. Phobos 200 GeV : PRL 88, 22302 : dNch/dη (η=0) = 650 ± 35(syst.) 200 GeV : Submitted to PRL (nucl-ex/0112001) 130 GeV : Phys. Lett. B 523, p. 227 10-20% 20-30% 30-40% 40-50% Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  6. BRAHMS Preliminary data(UA5, Z. Phys. C 33, 1) : BRAHMS data shows 50% increase at η = 0 Models : Kharzeev and Levin (solid) and AMPT(dashed) describes the data well. pp Comparison to scaled and models Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  7. dN/dh vs. h BRAHMS Preliminary Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  8. SPS Charged Particle Mult.snn=130GeV BRAHMS. Phys Lett. B. 523 227 (2001) Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  9. 200 GeV top 5% 130 GeV top 5% 200 GeV 30-40% SPS Pb- Pb(NA49) Limiting fragmentation: SPS=>RHIC Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  10. Fit to dN /dh = AN + BN : ch part coll • Kharzeev and Levin (nucl-th/0108006) • Soft-Hard: • dN/d=(1-X) npp <Npart>/2 • + X npp <Ncoll> • <Ncoll>=1049, <Npart>=339, npp=2.43 =>dN/d=668 (with X=0.9) • High Density QCD-saturation: • dN/dy =f(Npart,Qs2,,QCD,s,y) • with =0.3 from HERA data • => dN/d=620 • (using dN/d=549ats=130GeV) dN/dh vs Npart 130: A= 1.24  0.08±0.2, B =0.12-+0.04-+0.06 200: A= 1.26  0.09±0.2 B =0.15-+0.04-+0.05 Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  11. Comparison to Kharzeev &Levin PLB523(2001)79 High dens. QCD Gluon saturation (red dashed) AMPT Zhang et al. PRC61(2001)067901 (blue dashed) Data symmetrized Error bars are Total = Sys. + Stat. Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  12. dN(200GeV)/dN(130GeV) AMPT dashed line K&L solid line 5-10 top 5% 30-40 40-50 Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  13. Ratios of particles and anti-particles at By looking at ratios of particles and anti-particles in the same spectrometer angular setting, from fields of opposite polarities the geometrical acceptance of the detector and efficiencies will tend to cancel out. We still have to take into account absorption of anti-protons and protons produced in the beampipe. Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  14. 2 Ring Imaging Cherenkov Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  15. PRL 87, 2001 Rapidity dependence of ratios at . BRAHMS Preliminary (and feeddown) Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  16. Ratios vs Pt and centrality BRAHMS Preliminary BRAHMS Preliminary No sign of Pt or centrality dependence Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  17. Pbar/p increases slowly with √S Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  18. We don’t yet understand baryon transport AMPT Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  19. √S dependence, towards matter/antimatter balance Preliminary Protons Kaons Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  20. CM Energy N(p) 26* 31 5 17 GeV 9* 20 130 GeV 29 (7)* (30) (23) 200 GeV * NA49 QM99 & Phys. Rev. Lett. 82, 2471 (1999) * PHENIX nucl-ex/0112006 * Assuming 14% more pbar (cf. dN/dη, BRAHMS sub to PRL dec.2001) and 0.75. Estimate of net protons at midrapidity Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

  21. RESULTS: 100+100 Nch (0-5%)  5000 dN/d (y=0)  632. FWHM  7.5 N(ch)  30 pr. participant-pair dN/d (y=0)  3.5/part. pair p-bar/p higher at y=0, similar at forward rapidity RESULTS: 65+65 Nch (0-5%)  4000 dN/d (y=0)  550. FWHM  7.2 N(ch)  23 pr. participant-pair dN/d (y=0)  3 pr. part. Pair p-bar/ p vs y shows increased but still incomplete transparency Midrapidity Plateau? y =0,0.7,2 : pbar/p  0.64, 0.66, 0.41 (±0.05 ± 0.06) Weak pt and centrality dependence Models inconsistent with data Summary First Au+Ausnn=130 ,200 GeV Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT

More Related