1 / 20

Métodos Numéricos para EDO’s

Métodos Numéricos para EDO’s. Métodos Numéricos para EDO’s. Esta parte compreende métodos que aproximam uma equação diferencial por uma equação de diferenças. Uma equação de diferenças de ordem n é uma sequência de equações da forma

trinh
Télécharger la présentation

Métodos Numéricos para EDO’s

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Métodos Numéricos para EDO’s

  2. Métodos Numéricos para EDO’s • Esta parte compreende métodos que aproximam uma equação diferencial por uma equação de diferenças. • Uma equação de diferenças de ordem n é uma sequência de equações da forma gk(yk+n, yk+n-1, … yk) = 0 k= 0, 1, 2, … (9) yi= i i = 0, 1, 2, …, n-1 • Os gksão funções de n+1 variáveis e os valores i, i = 0(1)n-1, são específicos. Uma solução de tal equação é uma sequência {y0, y1, y2, y3, …, yn-1, yn} que satisfaz a (9).

  3. Métodos Numéricos para EDO’s • Note que determinar numericamente uma solução de uma equação diferencial é encontrar os valores y1, y2, …, yn através de uma aproximação da equação de diferenças. • Essa aproximação introduz um erro de truncamento e um erro de arredondamento

  4. Métodos Numéricos para EDO’s • Os métodos de passos simples necessitam apenas dos resultados de yk,do passo anterior, para determinar a aproximação de yk+1. • Os métodos de passos múltiplos servem para determinar a aproximação yk+1 a qual depende dos valores de yk, yk-1 . . .

  5. Métodos de Euler • O método de Euler é um método mais simples que oferece solução para EDOs com condições iniciais. • A simplicidade do método serve ilustrar técnicas usadas em outros métodos. • Ele consiste em aproximar a solução y ( x ), no sentido de uma linearização, por meio de suas tangentes (vide próximo slide).

  6. y = F(x) y2 y1 y0 x0 x1 x2 Métodos de Euler • Vamos resolver uma EDO de primeira ordem da forma y’(x) = f(x,y) sujeita à condição inicial y(x0) = y0 . • Suponha que y = F(x) e que a solução analítica seja a curva ilustrada abaixo.

  7. y = F(x) y2 y1 y0 x0 x1 x2 Métodos de Euler • Para fazer uma estimativa de y1, vamos considerar que: (dy/dx)|(x0, y0) = f(x0,y0) • Disso resulta: (y - y0)/(x - x0) = f(x0,y0)

  8. Q = (x1,y) y P1 = (x1,y1) y1 y0 x0 x1 Métodos de Euler • Considerando que se h = x1 - x0 tender a zero, teremos que a ordenada do ponto Q, y tende a y1 e daí: y = y0 + hf(x0,y0) ou y1y0 + hf(x0,y0) Generalizando, obtemos a seguinte equação de diferenças: yk+1= yk + hf(xk,yk) que é a expressão do Método de Euler.

  9. Métodos de Euler (2) • Outra interpretação do método de Euler • Considere o problema • i.e., são dados um ponto de partida, (x0,y0), e uma direção a ser tomada, f (x, y ). • Desejamos determinar y (z ).

  10. Interpretação geométrica do Método de Euler Figura 1 y y1 y ( x )  y0  x h x0 z = x1 Métodos de Euler (2) Considere a Figura 1. A interpretação geométrica da figura nos permite escrever a equação: F ’(x 0 ) = y’ (x0) = f (x0 , y 0) Fazendo x1 – x0 = h Obteremos y1 = y0 + h f (x0 , y 0) ou F(x 1) F(x0) + F ’(x0) (x1 – x0 ) (Taylor).

  11. Interpretação geométrica do Método de Euler Figura 1 y y1 y ( x )  y0  x h x0 z = x1 Métodos de Euler (2) F(x 1) F(x 0) + F ’(x 0) (x1 – x0 ) (Taylor). Podemos dizer, portanto, que: y1F(x 1) = F( z ) Note que estamos substituindo a função desconhecida y( x ) por, simplesmente uma reta em todo intervalo [x0; z] e calculando a imagem de z sobre ela o que pode ser uma aproximação ruim para y( z ).

  12. Método de Euler considerando dois subintervalos Figura 2 y y ( x ) y2 y1 y0 x h h z = x2 x0 x1 Métodos de Euler (2) • Todavia, note que podemos melhorar esta aproximação. Para isso, devemos subdividir o intervalo [x0; z] em subintervalos de amplitude constante, genericamente chamada de h. • Como sabemos calcular a direção da função incógnita y(x) em cada ponto, bastar substituir essa função por um segmento de reta, em cada um destes subintervalos. • Note que estes segmentos terão a direção que ela (função) tem no início de cada dos subintervalos, (veja Figura 2). • Assim, obtemos: • yi + 1 = yi + hf(xi, yi), i = 0, 1, 2, ... • que vem a ser o método de Euler.

  13. Métodos de Euler (2)

  14. Método Modificado de Euler • Um problema que ocorre no método “simples” de Euler é que ele pressupõe que a função que está sendo aproximada mantém, em todo intervalo, a direção que ela tem no extremo “de partida” dele. • O método modificado de Euler irá considerar também uma única direção para a função y ( x ), só que uma direção média entre aquela do “início” do intervalo e uma estimativa da direção no “final” dele. • Para tanto, em primeiro lugar, usando o método “simples” de Euler, fazemos uma previsão de yi + 1, chamada yi+1.

  15. Método Modificado de Euler Dessa forma, Previsão :yi + 1 =yi + hf (xi , yi ). Com esta previsão, podemos obter o valor aproximado da direção da curva y(x) no ponto (xi + 1, yi + 1) através de f(xi + 1, y i + 1). Determina-se a chamada correção, Correção : yi + 1 = yi + h/2[f(xi, yi) + f(xi + 1, yi + 1)].

  16. Interpretação geométrica do Método modificado de Euler Figura 3 y ( x ) y ( x1 ; y1 ) Direção média ( x1 ; y1 ) x h x1 x0 Método Modificado de Euler Correção : yi + 1 = yi + h/2[f(xi, yi) + f(xi + 1, yi + 1)] Esta expressão é conhecida como o método modificado de Euler. Uma interpretação geométrica deste método pode ser vista na Figura 3.

  17. Método Modificado de Euler Exemplo - Encontrar a solução da equação diferencial ordinária y’ = f (x, y ) = 2x + 3 com a condição de valor inicial y ( 1) = 1. Dividindo o intervalo [1; 2 ] em apenas uma parte, i.e, fazendo h =1 e, aplicando o método de modificado de Euler, determine o valor aproximado de y(2) para a equação dada.

  18. Método Modificado de Euler Solução Sabendo que a cada aproximação é necessário fazer um processo de previsão – correção e, considerando h =1, temos yi + 1 Previsão yi+1 = yi + hf(xi , yi ) no caso y1 = y0+ hf(x0, y0) y1 = 1 + 1f(1, 1) = 1 + 1 (2x1 + 3) = 6

  19. Método Modificado de Euler Solução Correção yi+1 = yi + h/2[f(xi , yi ) + f(xi+1 , yi+1)] y1 = 1 + ½[f(1, 1) + f(2, 6)] y1 = 1 + 1/2[5 + 2x2+3] = 1 + 6 = 7.

  20. Referências Ruggiero, M. A. G., Lopes, V. L. R., Cálculo Numérico – Aspectos Teóricos e Computacionais, Pearson/Markron Books, 2a. Edição, 1998. Cláudio, D. M. e Martins, J. M., Cálculo Numérico Computacional, Ed. Atlas, 1987. Barroso, L, Barroso, M.M.A., Campos Filho, F. F., Cálculo Numérico com Aplicações, Ed. Harbra, 1987.

More Related