1 / 35

Chap. 5 Field-effect transistors (FET)

Chap. 5 Field-effect transistors (FET). Widely used in VLSI used in some analog amplifiers - output stage of power amplifers (may have good thermal characteristics if designed properly) n-channel or p-channel structure FET - voltage controlled device BJT - current controlled device.

tyrell
Télécharger la présentation

Chap. 5 Field-effect transistors (FET)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chap. 5 Field-effect transistors (FET) • Widely used in VLSI • used in some analog amplifiers - output stage of power amplifers • (may have good thermal characteristics if designed properly) • n-channel or p-channel structure • FET - voltage controlled device • BJT - current controlled device ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  2. Physical structure of a n-channel device: Typically L = 0.35 to 10 m, W = 2 to 500 m, and the thickness of the oxide layer is in the range of 0.02 to 0.1 m. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  3. MOSFETs • MOS - metal oxide semicondutor structure (original devices had metal • gates, now they are silicon) • NMOS - n-channel MOSFET • PMOS - p-channel MOSFET • CMOS - complementary MOS, both n-channel and p-channel devices • used in conjuction with each other (most popular in IC’s) • MESFET - metal semiconductor structure, used in high-speed GaAs devices • JFET - junction FET, early type of FET ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  4. CMOS Cross section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  5. If VGS> VT (threshold voltage), an induced, conducting n-channel forms between the drain and source. The channel conductance is proportional to vGS - Vt. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  6. Symbols and conventions drain • n-channel • several slightly different symbols • (source is often connected to the • substrate which is usually grounded) + VDS - gate + VGS - source ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  7. Symbols and conventions drain • p-channel • several slightly different symbols • (source is often connected to VDD) + VDS - gate + VGS - source ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  8. Output characteristics (n-channel) (linear) + VDS - An n-channel MOSFET with VGSand VDSapplied and with the normal directions of current flow indicated. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  9. Input characteristics (n-channel) ID = K(VGS-VT)2 + VDS - ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  10. Summary of MOSFET behavior (n-channel) • VGS> VT (threshold voltage) for the device to be on • VDS> VGS - VT for device to be in saturation region • ID = K(VGS-VT)2 • Enhancement mode device, VT> 0 • Depletion mode device, VT < 0 (conducts with VGS = 0) ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  11. Comparison of BJT and FET • FET • voltage controlled • VGS> VT • for device to be on • operates in saturation region (amplifier); • VDS> VGS - VT • ID = K(VGS-VT)2 • BJT • current controlled • VBE 0.7 V • for device to be on • operates in linear region (amplifier); • BE junction forward biased, • BC junction reversed biased • IC = bIB ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  12. MOSFET aspect ratio ID = K(VGS-VT)2 K = transconductance parameter K = 1/2 K' (W/L) K' = mnCox, where mn is the mobility of electrons, and Cox is the capacitance of the oxide W/L is the aspect ratio, W is the width of the gate, L is the length of the gate. ID W/L ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  13. Prob 5.41(a) Given: VT = 2V, K = (1/2) .5 mA/V2 (a) Find V1 Use, ID = K(VGS-VT)2 10uA = (1/2) .5 (VGS - 2)2 Solve for VGS VGS = 2.2V V1 = - 2.2V ID IG = 0 + V1 VGS - n channel ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  14. Prob 5.41(b) Given: VT = 2V, K = (1/2) .5 mA/V2 (b) Find V2 Use, ID = K(VGS-VT)2 10uA = (1/2) .5 (VGS - 2)2 Solve for VGS VGS = 2.2V V2 = VGS = 2.2V V2 IG = 0 + VGS - ID n channel ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  15. Prob 5.41(f) Given: VT = 2V, K = (1/2) .5 mA/V2 (f) Find VGS Equate current in load and transistor Current in transistor: ID = K(VGS-VT)2 Current in resistor: I = (5 - VGS) /100K Equate currents (5 - VGS) /100K = (1/2) .5 (VGS - 2)2 Solve for VGS VGS = 2.33V IG = 0 ID n channel + VGS - ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  16. 5.4 MOSFETS at DC DC problem Find ID, and VGS, and VDS VGS = 5V VGS > VT, so device is on Assume device is in saturation ID = K(VGS-VT)2 ID = (0.05 mA/V2)(5-1)2 ID = 0.8 mA VDS = VDD - ID RD VDS = 10 - (0.8)6 VDS = 5.2V ID IG = 0 + VDS - + VGS - ID VT = 1V K = 0.05 mA/V2 (typical values) ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  17. General DC problem DC problem Find ID, and VGS Assume device is in saturation ID = K(VGS-VT)2 ID = K(5 - ID RS -VT)2 18ID 2 - 25 ID + 8 = 0 Solve for ID, use quadratic formula ID = 0.89mA, 0.5mA, which is correct? For ID = 0.89mA, VGS = 5 - (0.89)6 = - 0.34V For ID = 0.5mA, VGS = 5 - (05)6 = 2V Only for ID = 0.5mA, is transistor on! IG = 0 + VDS - + VGS - ID VT = 1V, K = 0.5 mA/V2 ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  18. VDD = 5V Ground DC problem: two FETs in series Find V If devices are identical IG = 0 device IG = 0 V V =VDD/2 = 2.5V ID device n channel ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  19. 5.5 MOSFET as an amplifier . d g + Ro d vgs g s - ac model s g d n channel + vgs - Ro = 1/slope of the output characteristics s SPICE model ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  20. Transconductance Transconductance = gm = dID/dVGS =d [K(VGS-VT)2]/dVGS = 2 K(VGS-VT) Useful relation: gm = 2 K  ID ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  21. Prob. 5.86 (a) Find the resistance of an enhancement load g I d + V - Rin s ac model Rin = resistance of current source || Ro resistance of current source = voltage across current source / current in current source resistance of current source = vgs / gmvgs = 1/gm Replace current source by a resistor of resistance 1/gm ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  22. Prob. 5.86 (a) Find the resistance of an enhancement load Often, Ro >> 1/gm ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  23. Prob. 5.86 (b) To raise the resistance of the transistor by a factor of 3, what must be done? R  1/gm = 1 / 2 K  ID = [1/2 ] [1/K] [ 1/ ID] = [1/2 ] [1/ 1/2 K  W/L ] [ 1/ ID] • Decrease ID by a factor of 9 • Decrease W by a factor of 9 • Increase L by a factor of 9 ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  24. 5.7 Integrated Circuit MOSFET amplifiers • Resistors take up too much space on an integrated ciruit (IC) • Use transistors as loads Typical amplifier DC analysis Equate current in Q1 and load I in Q1 = I in load K(VGS-VT)2 = I in load ID ID ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  25. ID ID ac analysis of MOSFET amplifiers g d + vgs - s Rin Rout ac circuit Rin = Rout = Rload || Ro ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  26. ac analysis of MOSFET amplifiers iin = 0 -gmvgs g d + + vout vgs - - s Ai =iout / iin = Av= vout/vin = -gmvgs(Ro || Rload) / vgs = -gm(Ro || Rload) ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  27. Transistor loads: depletion load I + V - VGS = 0 Depletion load R = Ro || resistance of current source with 0 magnitude = Ro ||  = Ro Ro = |VA| / I Resistance is current dependent ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  28. CMOS amp • Q2 and Q3 form a p-channel • current mirror load for Q1 • Q4 and Q3 establish Iref • I = Iref due to current mirror • Given: • |VT| = 1V, |VA| = 50V • p-channel mpCox = 20mA/V2 • n-channel mnCox = 40mA/V2 • WQ1 = Wp = 100mm • WQ4 = 50mm • L = 10mm Iref I ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  29. Iref I CMOS amp: power Given: |VT| = 1V, |VA| = 50V p-channel mpCox = 20mA/V2 n-channel mnCox = 40mA/V2 WQ1 = Wp = 100mm WQ4 = 50mm L = 10mm Find Total power consumed • Power consumed = 2IrefVDD • Equate currents in Q3 and Q4 to find Iref • IQ3 = IQ4 = K3(VGS-VT)2 =K4(VGS-VT)2 • Note that K’s are the same: K3 = (1/2)(20)(100/10)=K4 =(1/2)(40)(50/10) • Therefore, Q3 and Q4 behave the same, so VGS3 = VGS4 = 2.5V • Iref = K4(VGS-VT)2 = (1/2)(40)(50/10) (2.5 - 1)2 = 225mA • Power consumed = (2) 5V 225mA = 2.25mW ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  30. CMOS amp: DC analysis Given: |VT| = 1V, |VA| = 50V p-channel mpCox = 20mA/V2 n-channel mnCox = 40mA/V2 WQ1 = Wp = 100mm WQ4 = 50mm L = 10mm + Vout - Iref • Find Vout • Consider current in Q1 or Q2 • Using Q1, IQ1 = K1(VGS-VT)2 • where VGS = Vout • 225mA = (1/2)(40)(100/10) (VGS - 1)2 • Solve for VGS, VGS = Vout = 1.75V ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  31. + Vout - Iref CMOS amp: ac analysis Given: |VT| = 1V, |VA| = 50V p-channel mpCox = 20mA/V2 n-channel mnCox = 40mA/V2 WQ1 = Wp = 100mm WQ4 = 50mm L = 10mm • Find Av • Av = -gm1(Ro1 || Ro2) • Ro1=Ro2 = 50/ 225mA = 222KW • gm = 2 K  ID • = (2) [(1/2)(40)(100/10)] 1/2  225mA • = 300mA/V • Av = -gm1(Ro1 || Ro2) = -300(.222/2)  -33 ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  32. CMOS multistage amp: ac analysis DC circuit ac circuit (neglects resistances of current sources) ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  33. CMOS multistage amp: ac analysis Av of stage 1: Vout1/Vgs1 = -gm1Vgs1Ro1/Vgs1 = -gm1ro1 Av of stage 2: Vout2/Vgs2 = -gm2Vgs2Ro2/Vgs2 = -gm2ro2 Overall Av = (-gm1ro1) (-gm2ro2) =gm1gm2ro1ro2 ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  34. Multistage CMOS amp: DC analysis Iref • Q3 and Q6 form a PMOS current mirror load for Q4 • Q1 and Q5 form an NMOS current mirror load for Q2 • Q5 and Q6 establish the current in Q1,Q2,Q3 and Q4 • The width of Q5 is adjusted to give a particular Iref ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

  35. Iref Multistage CMOS amp: DC analysis • Equate currents in Q5 and Q6 • IQ5 = IQ6 = K5(VGS5-VT)2 =K6((VGS5 -VDD)-VT)2 • Solve for VGS5, Use VGS5 to find Iref • Other current s are multiples of Iref • K3/K6 = IQ3/Iref • K1/K5 = IQ1/Iref • Find VD4, and VD1 = Vout from currents in those transistors • Given KP = 80mA/V2, KN = 100mA/V2, |VT| = 1V, VDD = 9V • 100(VGS5 - 1)2 =80((VGS5 -9) - (- 1))2, VGS5= 5.14V, 48.9V • FindIref, 100(5.14 - 1)2 = 1.7mA • IQ3 = IQ4 = IQ2 = IQ1 because all KN’s and KP’s are equal ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology - Fall 2002

More Related