1 / 19

Avalanche Statistics

W. Riegler, H. Schindler , R. Veenhof. Avalanche Statistics. RD51 Collaboration Meeting, 14 October 2008 . Overview.

yelena
Télécharger la présentation

Avalanche Statistics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. W. Riegler, H. Schindler, R. Veenhof AvalancheStatistics RD51Collaboration Meeting, 14 October 2008

  2. Overview • The randomnatureoftheelectronmultiplicationprocessleadstofluctuations in theavalanchesize probabilitydistributionP(n, x) that an avalanchecontainsn electrons after a distancex fromitsorigin. • Togetherwiththefluctuations in theionizationprocess, avalanchefluctuationsset a fundamental limittodetectorresolution Motivation • ExactshapeoftheavalanchesizedistributionP(n, x) becomesimportantforsmallnumbersofprimaryelectrons. • DetectionefficiencyisaffectedbyP(n, x) Outline • Review ofavalancheevolutionmodelsandtheresultingdistributions • Resultsfromsingleelectronavalanchesimulations in Garfield usingtherecentlyimplementedmicroscopictrackingfeatures Assumptions • homogeneousfieldE= (E, 0, 0) • avalancheinitatedby a singleelectron • spacechargeandphotonfeedbacknegligible η

  3. Yule-Furry Model Assumption • ionizationprobabilitya (per unitpathlength) isthe same for all avalancheelectrons • a = α (Townsend coefficient) • In otherwords: theionizationmeanfreepathhas a meanλ = 1/αandisexponentiallydistributed Meanavalanchesize Distribution • The avalanchesizefollows a binomialdistribution • For large avalanchesizes, P(n,x) canbe well approximatedby an exponential • Efficiency

  4. measurements in methylalby H. Schlumbohm significantdeviationsfromtheexponentialat large reducedfields • „rounding-off“ characterizedbyparameterαx0 (x0 = Ui/E) E/p = 186.5 V cm-1 Torr-1 αx0=0.19 E/p = 70 V cm-1 Torr-1 αx0=0.038 E/p = 76.5 V cm-1 Torr-1 αx0=0.044 E/p = 426 V cm-1 Torr-1 αx0=0.24 E/p = 105 V cm-1 Torr-1 αx0=0.095 H. Schlumbohm, Zur Statistik der Elektronenlawinen im ebenen Feld, Z. Physik 151, 563 (1958)

  5. Legler‘s Model Legler‘sapproach ElectronsarecreatedwithenergiesbelowtheionizationenergyeUiand lose mostoftheirkineticenergy after an ionizingcollision electronhastogainenergyfromthefieldbeforebeingabletoionize  adepends on thedistanceξsincethe last ionizingcollision Distribution ofionizationmeanfreepath Legler‘s model gas Yule-Furry W. Legler, Die Statistik der Elektronenlawinen in elektronegativen Gasen, bei hohen Feldstärken und bei großer Gasverstärkung, Z. Naturforschg. 16a, 253-261 (1961) Meanavalanchesize Distribution The shapeofthedistributionischaracterizedbytheparameterαx0  [0, ln2] αx0 1  Yule-Furry Withincreasingαx0thedistributionbecomesmore „rounded“,maximumapproachesmean Toy MC x0=0 μm x0=1 μm x0=2 μm x0=3 μm IBM 650

  6. Legler‘s Model momentsofthedistributioncanbecalculated (asshownbyAlkhazov)  allows (very) approximative reconstructionofthedistribution(convergenceproblem) G. D. Alkhazov, StatisticsofElectronAvalanchesand Ultimate Resolutionof Proportional Counters, Nucl. Instr. Meth. 89, 155-165 (1970) noclosed-form solution numericalsolutiondifficult IBM 650 „Die Rechnungen wurden mit dem Magnettrommelrechner IBM 650 (…) durchgeführt.“

  7. DiscreteSteps • „bumps“ seemtoindicateavalancheevolution in steps • an electronisstopped after a typicaldistancex0  1/E ofthe order ofseveralμm • withprobabilitypitionizes, withprobability (1 – p) it loses itsenergy in a different way after eachstep Distancetofirstionization Ar (E = 30 kV/cm, p = 1 bar) x0 Meanavalanchesize after ksteps Distribution momentscanbecalculated, but nosolution in closedform p = 1  deltadistribution p smallexponential

  8. Pόlya Distribution Pόlyadistribution Efficiency Goodagreementwith experimental avalanchespectra Problem:no (convincing) physicalinterpretationoftheparameterm Byrne‘sapproach: Distribution ofionizationmeanfreepath space-chargeeffect J. Byrne, StatisticsofElectronAvalanches in the Proportional Counter,Nucl. Instr. Meth. 74, 291-296 (1969)

  9. Avalanche Growth • The avalanchesizestatisticsisdeterminedbyfluctuations in theearlystages. • After theavalanchesizehasbecomesufficiently large, a stationaryelectronenergydistributionshouldbeattained. Hence, forn 102 – 103theavalancheisexpectedtogrowexponentially. Yule-Furry model Polya

  10. Simulation • Microscopic_Avalancheprocedure in Garfield availablesince May 2008 performstrackingof all electrons in theavalancheatmolecularlevel (Monte Carlo simulationderivedfromMagboltz). • Information obtainedfromthesimulation • total numbersofelectronsandions in theavalanche • coordinatesofionizationevents • electronenergydistribution • interactionrates Goal • Investigateimpactof • electricfield • pressure • gas mixture on thesingleelectronavalanchespectrum • parallel-plategeometry • electronstartswithkineticenergyε = 1 eV ionization

  11. Argon Whatistheeffectoftheelectricfield on theavalanchespectrum? gapdadjusted such that<n>  500 E = 30 kV/cm, p = 1 bar E = 55 kV/cm, p = 1 bar Fit Legler Fit Polya Fit Legler Fit Polya

  12. Argon energydistribution 20 kV/cm 30 kV/cm 40 kV/cm 50 kV/cm 60 kV/cm withincreasingfield, theenergydistributionisshiftedtowardshigherenergieswhereionizationis dominant

  13. Attachment introduceattachmentcoefficientη (analogouslytoα) Meanavalanchesize Distribution forconstantαandη effective Townsend coefficientα - η distributionremainsessentiallyexponential W. Legler, Die Statistik der Elektronenlawinen in elektronegativen Gasen, bei hohen Feldstärken und bei großer Gasverstärkung, Z. Naturforschg. 16a, 253-261 (1961)

  14. Admixtures Ar (80%) + CO2 (20%) Ar (95%) + iC4H10 (5%)

  15. ionizationcross-section (Magboltz) energydistribution (E = 30 kV/cm, p = 1 bar) Whichshapeofσ(ε) yields „better“ avalanchestatistics?

  16. Ne Parameters: E = 30 kV/cm, p = 1 bar, d = 0.02 cm m 3.3 αx0  0.3 <n>  1070 RMS/<n>  0.5 Ar m 1.7 αx0  0.15 Kr <n>  900 RMS/<n>  0.7 m 1.4 αx0  0.1 <n>  280 RMS/<n>  0.8

  17. Conclusions • „Simple“ models (e. g. Legler‘s model gas) canprovide qualitative insightintothemechanismsofavalancheevolution but areof limited useforthe quantitative predictionofavalanchespectra (noanalyticsolutionavailableor lack ofphysicalinterpretation). • Forrealisticmodels, theenergydependenceoftheionization/excitationcross-sectionsandtheelectronenergydistributionhavetobetakenintoaccount Monte Carlo simulationis a betteraproach. • Avalanchespectracanbesimulated in Garfield based on molecularcross-sections. Preliminaryresultsconfirmexpectedtendencies (e.g. betterefficiencyathigherfields).

More Related