1 / 43

Progettazione di circuiti e sistemi VLSI

Progettazione di circuiti e sistemi VLSI. Anno Accademico 2010-2011 Lezione 5 15/18.3.2011 L’inverter CMOS. The CMOS Inverter: A First Glance. V. DD. V. V. in. out. C. L. V. DD. CMOS Inverter. N Well. PMOS. 2 l. Contacts. Out. In. Metal 1. Polysilicon. NMOS. GND.

yon
Télécharger la présentation

Progettazione di circuiti e sistemi VLSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Progettazione di circuiti e sistemi VLSI Anno Accademico 2010-2011 Lezione 5 15/18.3.2011 L’inverter CMOS L'Inverter CMOS

  2. The CMOS Inverter: A First Glance V DD V V in out C L L'Inverter CMOS

  3. V DD CMOS Inverter N Well PMOS 2l Contacts Out In Metal 1 Polysilicon NMOS GND L'Inverter CMOS

  4. Two Inverters Share power and ground Abut cells Connect in Metal L'Inverter CMOS

  5. V V DD DD R p V out V out R n V V V 0 = = in DD in CMOS InverterFirst-Order DC Analysis VOL = 0 VOH = VDD VM = f(Rn, Rp) L'Inverter CMOS

  6. CMOS Inverter: Transient Response V V DD DD t = f(R .C ) pHL n L R p = 0.69 R C n L V out V out C L C L R n V 0 V V = = in DD in (a) Low-to-high (b) High-to-low L'Inverter CMOS

  7. Voltage TransferCharacteristic L'Inverter CMOS

  8. I Dn V = V +V in DD GSp I = - I Dn Dp V = V +V out DD DSp V out I I I Dp Dn Dn V =0 V =0 in in V =1.5 V =1.5 in in V V V DSp DSp out V =-1 GSp V =-2.5 GSp V = V +V V = V +V in DD GSp out DD DSp I = - I Dn Dp PMOS Load Lines L'Inverter CMOS

  9. CMOS Inverter Load Characteristics L'Inverter CMOS

  10. CMOS Inverter VTC L'Inverter CMOS

  11. Switching Threshold as a function of Transistor Ratio 1.8 1.7 1.6 1.5 1.4 (V) 1.3 M V 1.2 1.1 1 0.9 0.8 0 1 10 10 /W W p n L'Inverter CMOS

  12. Determining VIH and VIL V out V OH V M V in A simplified approach V OL V V IL IH L'Inverter CMOS

  13. Inverter Gain L'Inverter CMOS

  14. Simulated VTC l VIL=1.03 VIH=1.45 NMH=1.05 NML=1.03 L'Inverter CMOS

  15. Gain=-1 Gain as a function of VDD L'Inverter CMOS

  16. 2.5 2 Good PMOS Bad NMOS 1.5 Nominal (V) out Good NMOS Bad PMOS V 1 0.5 0 0 0.5 1 1.5 2 2.5 V (V) in Impact of Process Variations L'Inverter CMOS

  17. Propagation Delay L'Inverter CMOS

  18. CMOS Inverter Propagation DelayApproach 1 L'Inverter CMOS

  19. CMOS Inverter Propagation DelayApproach 2 L'Inverter CMOS

  20. V DD PMOS Metal1 Polysilicon NMOS CMOS Inverters 1.2 m m =2l Out In GND L'Inverter CMOS

  21. Transient Response ? tp = 0.69 CL (Reqn+Reqp)/2 tpHL tpLH L'Inverter CMOS

  22. Design for Performance • Keep capacitances small • Increase transistor sizes • watch out for self-loading! • Increase VDD (????) L'Inverter CMOS

  23. Delay as a function of VDD L'Inverter CMOS

  24. NMOS/PMOS ratio tpHL tpLH tp b = Wp/Wn L'Inverter CMOS

  25. Inverter Sizing Due inverter in cascata  CL=(Cdp1+Cdn1)+ (Cgp2+Cgn2) + CW= (1+β)(Cdn1+Cgn2) +Cw  tp=(tpHL +tpLH)/2=0.69 CL(Reqn+Reqp)/2 = =0.345 ((1+β)(Cdn1+Cgn2) +CW) Reqn(1+r/β) dove r=Reqp/Reqn con stesse dimensioni PMOS e NMOS per δtp/δβ= 0 βopt=sqrt (r (1+ CW/(Cdn1+Cgn2))) L'Inverter CMOS

  26. Inverter Chain In Out CL • If CL is given: • How many stages are needed to minimize the delay? • How to size the inverters? • May need some additional constraints. L'Inverter CMOS

  27. - - 1 1 æ ö æ ö W W N P ç ÷ ç ÷ = = = R R R R R ç ÷ ç ÷ P unit unit N W W W è ø è ø unit unit Inverter Delay • Minimum length devices, L=0.25mm • Assume that for WP = 2WN =2W • same pull-up and pull-down currents • approx. equal resistances RN = RP • approx. equal rise tpLH and fall tpHL delays • Analyze as an RC network 2W W tpHL = (ln 2) RNCL tpLH = (ln 2) RPCL Delay (D): Load for the next stage: L'Inverter CMOS

  28. Inverter with Load Delay RW CL RW Load (CL) tp = kRWCL k is a constant, equal to 0.69 Assumptions: no load -> zero delay Wunit = 1 L'Inverter CMOS

  29. Inverter with Load CP = 2Cunit Delay 2W W Cint CL Load CN = Cunit Delay = kRW(Cint + CL) = kRWCint + kRWCL = kRW Cint(1+ CL /Cint) = Delay (Internal) + Delay (Load) L'Inverter CMOS

  30. Delay Formula Cint = gCgin withg 1 f = CL/Cgin- effective fanout R = Runit/W ; Cint =WCunit tp0 = 0.69RunitCunit L'Inverter CMOS

  31. Apply to Inverter Chain In Out CL 1 2 N tp = tp1 + tp2 + …+ tpN L'Inverter CMOS

  32. Optimal Tapering for Given N • Delay equation has N - 1 unknowns, Cgin,2 – Cgin,N • Minimize the delay, find N - 1 partial derivatives • Result: Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-1 • Size of each stage is the geometric mean of two neighbors • each stage has the same effective fanout (Cout/Cin) • each stage has the same delay L'Inverter CMOS

  33. Optimum Delay and Number of Stages When each stage is sized by f and has same eff. fanout f: Effective fanout of each stage: Minimum path delay L'Inverter CMOS

  34. Example In Out CL= 8 C1 1 f f2 C1 CL/C1 has to be evenly distributed across N = 3 stages: L'Inverter CMOS

  35. Optimum Number of Stages For a given load, CL and given input capacitance Cin Find optimal sizing f For g = 0, f = e, N = lnF L'Inverter CMOS

  36. Optimum Effective Fanout f Optimum f for given process defined by g fopt = 3.6 forg=1 L'Inverter CMOS

  37. Normalized delay function of F L'Inverter CMOS

  38. Power Dissipation L'Inverter CMOS

  39. Where Does Power Go in CMOS? L'Inverter CMOS

  40. Dynamic Power Dissipation Vdd Vin Vout C L 2 Energy/transition = C * V L dd 2 Power = Energy/transition *f* dd Not a function of transistor sizes! Need to reduce C , V , and f to reduce power. L dd L'Inverter CMOS

  41. Modification for Circuits with Reduced Swing L'Inverter CMOS

  42. Node Transition Activity and Power L'Inverter CMOS

  43. Energy Delay Product PDP (Power Delay Product) = PavTp=CLVDD2/2 Energia per commutazione EDP = PDP x tp tp=αCLVDD/(VDD-VTe) dove VTe=VT+VDSAT/2 EDP = αCL2VDD3/2(VDD-VTe) VDDopt = 3/2VTe L'Inverter CMOS

More Related