1 / 62

William Schulz Bechara

Life of Synthetic C O 2 , Environmental Impact, Chemical Synthesis and Industrial Applications. William Schulz Bechara. Charette Group - Literature Meeting May 2 nd , 2012. World's Top Market Value.

zada
Télécharger la présentation

William Schulz Bechara

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Life of Synthetic CO2, Environmental Impact, Chemical Synthesis and Industrial Applications William Schulz Bechara Charette Group - Literature Meeting May 2nd, 2012

  2. World's Top Market Value The world still relies heavily today on fossil fuels to cover about 80% of its energy needs 1) Oil&Gas : 5 2) Telecommunication : 2 3) Eletronics : 4 4) Pharma : 3 5) Food : 2 6) Natural Resources Exploration : 2 7) Bank : 3 8) Consumer goods & Retailing : 3 9) Internet :1 3 1 1 7 5 3 3 1 6 2 1 9 8 1 7 8 2 4 8 3 4 7 5 4 6

  3. CO2 – One of the Largest Waste Product The world still relies heavily today on fossil fuels to cover about 80% of its energy needs Electricity Without Carbon, Nature News Feature, 14 August 2008, 454.

  4. Global Warming? Image from http://berkeleyearth.org/analysis - by Berkeley Earth Surface Temperature Institute. Retrieved 2012-05-02.

  5. Global Warming? Year a) Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res.2001, 106, 2929. b) Esper, J.; Cook, E. R.; Schweingruber, F. H. Science2002, 295, 5563. c) Jones, P.D.; Briffa, K. R.; Barnett, T. P.; Tett, D. F. B. The Holocene, 1998, 8, 455. d) Mann, M.E., R.S. Bradley and M.K. Hughes, Nature, 1998, 392, 779.; Geophysical Research Letters, 1999, 26, 759. e) Jones, P. D.; Mann, M. E. Reviews of Geophysics, 2004, 42, RG2002 1-42. 

  6. CO2 vs Global Warming? Petit, J. R et al Nature 1999, 399, 429.

  7. CO2 and Global Warming? [...] records suggests a close link between CO2 and climate [...] The role and relative importance of CO2 in producing these climate changes remains unclear [...] a) Petit, J. R et al. Nature 1999, 399, 429. b) Barnola, J.-M.; Raynaud, d.; Korotkevich, Y. S.; Lorius C. Nature, 1987,329, 408. c) Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Le Treut, H. Nature, 1990, 347, 139. d) Martıinez-Garcia, A. et al. Nature 2011, 476, 312. e) Tripati, A. K. et all. Science 2009, 326, 1394. f) Shakun, J. D. et al.Nature2012,484, 49.

  8. CO2 Emissions Going Up Aresta, M. Carbon Dioxide as Chemical Feedstock2010 Wiley, Weinheim.

  9. CO2 Emissions : Natural vs Human (Anthropogenic CO2) 3.2 GtC/y in 1990 24 GtC/y in 2010 Gigatons of C/year  Solomon, S.; Qin, D.; Manning, M. ; Chen, Z.; Marquis, M. ; Averyt, K. B.; Tignor, M.; Miller, H. L. IPCC Fourth Assessment Report: Climate Change, 2007, chap. 7, 515. at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43.

  10. Life of Synthetic CO2 Image from http://www.theurbn.com/2011/06/capturing-time-bp-and-the-future by  Hayley Peacock, Capturing Time: BP And The Future, UubanTimes news. Retrieved 2012-05-02.

  11. CO2 Storage / Enhanced Oil recovery a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

  12. CO2 Storage / Enhanced Oil recovery a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

  13. CO2 Emissions – CCS Project Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - by Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

  14. Carbon Capture and Storage (CCS) Project Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

  15. CCS Project - Operational Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

  16. CO2 Scrubbing (Purification) O2, N2 and other gas Amines MgO M-oxides Cold Hot CO2, H2O, CO, O2, N2 and other gas MacDowell, N. et al. Energy Environ. Sci. 2010, 3, 1645.

  17. Recycling CO2 •  Only 1% of the total CO2 on Earth is currently being used for chemical synthesis : • Chemical inertness, • CO2 capture and storage is expensive. • Recycling CO2 for the production of chemicals not only lower the impact on global climate changes but also provides a grand challenge in exploring new concepts and opportunities for catalytic and industrial development. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Gibson, D. H. Chem. Rev.1996, 96, 2063.

  18. Other use of CO2 Aresta, M. Carbon Dioxide as Chemical Feedstock2010 Wiley, Weinheim.

  19. Annual industrial use of CO2 in megatons 3.2GtC/y in 1990 24GtC/y in 2010 Gigatons of C/year  Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43.

  20. Properties of CO2 as Ligand - Thermodynamically stable - High energy substances required Coordination Modes a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. c) Ma, J.; Sun, N. N.; Zhang, X. L; Zhao, N.; Mao, F. K.; Wie, W.; Sun, Y. H. Catal.Today, 2009, 148, 221. d) Gibson, D. H. Chem. Rev.1996, 96, 2063.

  21. CO2 Reduction a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Gibson, D. H. Chem. Rev.1996, 96, 2063.

  22. CO2 Reduction “Homogeneous catalysts show satisfactory activity and selectivity, but the recovery and regeneration are problematic. [...] Heterogeneous catalysts are preferable in terms of stability, separation, handling, and reuse, as well as reactor design, which reflects in lower costs for large-scale productions.” a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Gibson, D. H. Chem. Rev.1996, 96, 2063.

  23. Reduction Potential a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja., J. M. Chem. Soc. Rev.2009, 38, 89. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  24. Reduction of CO2 to CO  Reverse water gas shift (RWGS) is the most promising process : - Metal : Cu, Cu/SiO2, Cu–Ni/Al2O3, Cu/ZnO, Cu–Zn/Al2O3, Pd/Al2O3, Pt/Al2O3, Pt/CeO2, Ni/CeO2, Rh/SiO2 (from Rh2(OAc)4) - Temperature : >600 °C - Cu-based systems remain mostly used. - Often reduction to CH4 occurs since CO is a better ligand than CO2 a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Kusama, H.; Bando, K. K.; Okabe, K.; Arakawa, H. Appl. Catal., A2001, 205, 285. c) Bando, K. K.; Soga, K.; Kunimori, K.; Arakawa, H. Appl.Catal., A1998, 175, 67. d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.

  25. Reduction of CO2 to CO a) Ernsta, K. H.; Campbell, C. T.; Moretti, G. J. Catal.1992, 134, 66. b) Fujita, S. I.; Usui, M.; Takezawa, N. J. Catal. 1992, 134, 220. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.

  26. Reduction of CO2 to CO Mechanism with Pt/CeO2 a) Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R. J. Phys. Chem.B 2004, 108, 20240. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.

  27. Photochemical Reduction of CO2 to CO Takeda, H.; Ishitani, O. Coordination Chemistry Reviews2010, 254, 346

  28. 1st Photochemical Reduction Using Ru Complex Recent Advances : Reducing catalyst Photocatalyst Takeda, H.; Ishitani, O. Coordination Chemistry Reviews2010, 254, 346

  29. Reduction of CO2 to CH4 - Sabatier Reaction  Important catalytic process for the production of syngas (CH4 and H2) - Thermodynamically favoured. - Metal = Ni, Ru, Rh, Pd, Pt. - Oxide support : SiO2, TiO2, Al2O3, ZrO2, CeO2, MgO, ZrO2, NiO, NiAl2O2. - Temperature : 400 - 700 °C - Dispersion and surface of oxides is important. - Ni is the best catalysts at 400 °C and exhibits excellent catalytic activity and stability yielding CO2 at 76% conversion and a selectivity to CH4 (vs CO and MeOH) of 99%. - Research is being conducted by the National Aeronautics and Space Administration on the application of the reaction using Ce0.72Zr0.28O2 in pace colonization on Mars to convert the Martian CO2 into CH4 and H2O for fuel and astronaut life-support systems. a) Lunde, P. J.; Kester, F. L.; Ind. Eng. Chem. Process Des. Dev.1974, 13, 27. b) Du, G. A.; Lim, S.; Yang, Y. H.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal.2007, 249, 370. c) Park, J. N.; McFarland, E. W.; J. Catal.2009, 266, 92. d) Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal., A2003, 247, 309. e) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.

  30. Potential Bifunctional Model for Pd/MgO Catalysis a) Park, J. N.; McFarland, E. W. J. Catal.2009, 266, 92. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.

  31. Synthesis of Hydrocarbons - Gasification of coal, synthesis of syngas : - Fischer-Tropsch process : 300,000 barrels of hydrocarbons/year - Modification to CO2 : • - Metal : Cu, Fe, Co. • - Support : Al2O3, Mn, Zr, Zn. • Reaction are limited to small chains, H2O formed suppresses the • reaction and they are not cost effective in most cases. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res.2001, 40, 1355.

  32. CO2 to MeOH - Metals : Ag, Au, Pd, Cu - Support (oxides) : Zn, Zr, Ce, Al, Si, V, Ti, Ga, B, Cr. - Temperature : 200-300 °C - Industrial use Cu/ZnO gives 99% selectivity to MeOH (vs CH4) at 260 °C 40 Mt/year for the synthesis of formaldehyde, methyl tert-butyl ether and acetic acid. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem.2009, 74, 487. c)Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43.

  33. Potential CO2 to MeOH in Industry 82% of conversion a) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem.2009, 74, 487.b) Shulenberger, A. M.; Jonsson, F. R.; Ingolfsson, O.; Tran, K.-C. Process for Producing Liquid Fuel from Carbon Dioxide and Water. US Patent Appl. 2007/0244208A1, 2007. c) Tremblay, J.-F. Chem. Eng. News 2008, 86, 13. d)Image from http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol – A New Leading Process For CO2 to Methanol, Mitsui Chemicals Inc.,New energy and fuel news.

  34. Synthesis of HCOOH Synthesis of HCOOH from CO2 is still limited. Y X Y X Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

  35. Synthesis of HCOOH Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

  36. Synthesis of HCOOH Analysis by H NMR : Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

  37. Combustion Heat of Fuels in Higher Heating Value (HHV) George A. Olah et al. : [...] Recycling of carbon dioxide [...] however, there is only limited interest in the US [...]. a) Image from http://en.wikipedia.org/wiki/Heat_of_combustion – Wikipedia - Heat of combustion. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem.2009, 74, 487.

  38. CO2 in Organic Chemistry Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  39. Industrial Synthesis of Salicylic Acid a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  40. Urea Synthesis and Derivatives Mesoporous silica a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  41. Reaction of CO2 with Organometallic Reagents a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  42. Dialkyl Carbonate Synthesis With Phosgene : With CO2 : Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  43. Dimethyl Carbonate Synthesis Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  44. Dimethyl Carbonate Synthesis from Epoxides a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Torii, K.; Arai, M. Green Chem. 2003, 5, 71

  45. Polymerization 2.0 MPa Catalyst / cocatalyst / epichlorohydrin 1/1/1000 (molar ratio) Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

  46. C-C Bond Formation Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

  47. Synthesis of a Cyclic Carbonate from an Oxirane a) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. b) Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics1987, 6, 137. c) Tian, J. S.; Wang, J. Q.; Chen, J. Y.; Fan, J. G.; Cai, F.; He, L. N. Appl. Catal., A 2006, 301, 215.

  48. Reaction of CO2 with Organometallic Reagents a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

  49. Possible Catalytic Synthesis of Acrylic Acid “b-H elimination is not favored for steric reasons: the rigid five membered ring does not allow the b-H atoms to come close to the nickel center.” a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Bruckmeier, C.; Lehenmeier, M. W.; Reichhardt, R.; Vagin, S. ; Rieger, B. Organometallics 2010, 29, 2199.

  50. No Catalysis Possible a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.

More Related