1 / 9

Antimatter

Antimatter. By Davion. Introduction to Antimatter.

zoltan
Télécharger la présentation

Antimatter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Antimatter By Davion

  2. Introduction to Antimatter • In particle physics, antimatter is the extension of the concept of the antiparticle to matter, where antimatter is composed of antiparticles in the same way that normal matter is composed of particles. For example, a positron(the antiparticle of the electron or e+) and an antiproton (p) can form an antihydrogen atom in the same way that an electron and a proton form a "normal matter" hydrogen atom. Furthermore, mixing matter and antimatter can lead to the annihilation of both, in the same way that mixing antiparticles and particles does, thus giving rise to high-energy photons (gamma rays) or other particle–antiparticle pairs. The result of antimatter meeting matter is an explosion.[1]

  3. Theory of Antimatter • The idea of negative matter has appeared in past theories of matter, theories which have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" (sources) and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter, a term which Pearson is credited with coining.[citation needed] Pearson's theory required a fourth dimension for the aether to flow from and into.[2] • The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898,[3] in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other.

  4. Natural Production of Antimatter • Positrons are produced naturally in β+ decays of naturally occurring radioactive isotopes (for example, potassium-40) and in interactions of gamma quanta (emitted by radioactive nuclei) with matter. Antineutrinos are another kind of antiparticles created by natural radioactivity (β− decay). Many different kinds of antiparticles are also produced by (and contained in) cosmic rays

  5. Where Antimatter can be found • Several NASA Institute for Advanced Concepts-funded studies are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the (Van Allen beltof the Earth,) and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

  6. The Van Allen Belt • The Van Allen radiation belt is a torus of energeticcharged particles (plasma) around Earth, which is held in place by Earth's magnetic field. It is believed that most of the particles that form the belts come from solar wind, and other particles by cosmic rays.[1] It is named after its discoverer, James Van Allen, and is located in the inner region of the Earth's magnetosphere. It is split into two distinct belts, with energetic electrons forming the outer belt and a combination of protons and electrons forming the inner belts. In addition, the radiation belts contain lesser amounts of other nuclei, such as alpha particles. The belts pose a hazard to satellites, which must protect their sensitive components with adequate shielding if their orbit spends significant time in the radiation belts.

  7. Artificial Production of Antimatter • Antiparticles are also produced in any environment with a sufficiently high temperature (mean particle energy greater than the pair production threshold). During the period of baryogenesis, when the universe was extremely hot and dense, matter and antimatter were continually produced and annihilated. The presence of remaining matter, and absence of detectable remaining antimatter,[16] also called baryon asymmetry, is attributed to violation of the CP-symmetry relating matter to antimatter. The exact mechanism of this violation during baryogenesis remains a mystery. • Positrons can also be produced by radioactive β+decay, but this mechanism can occur both naturally and (artificially).

  8. Credits Powerpoint by Davion Sources: http://en.wikipedia.org/wiki/Antimatterhttp://en.wikipedia.org/wiki/Van_allen_belt

  9. End

More Related