1 / 21


NUOVA DIREZIONE DIDATTICA VASTO. PLANNING ALGORITHMS. The ability to solve problems in a creative and effective way seems to be essential for all future European citizens.

Télécharger la présentation


An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript


  2. The ability to solve problems in a creative and effective way seems to be essential for all future European citizens. Facing to the requirements of our New National Guidelines for primary school maths programs , our school has activated some logic and strategy labs to implement the making of a rational thinking. Our choice fell on planning algorithms, presented under the shape of sequential games. INTRODUCTION

  3. Materials 20 cards GO STRAIGHT, 10 cards  TURN LEFT 10 cards  TURN RIGHT. A floor made up of wide square tiles or a chessboard floor. 40 coloured cards to leave traces along the way. A watch or a stopwatch with seconds. ALGO AND ROB – 3rd CLASS

  4. Youset a startingpoint on the floor. Team Ahasgotallcards in itshands and itdecides in whichordergivingthem to itsownchildthatplaysRob’srole, in order to makehimmove on the chessboard. Each time Robleaves a box on the board, you put a coloured card to trace the pathway. 3rd CLASS Rules

  5. At the end of the way, team A collectsall the cardsused, mix and givethem to team B. • Team B must put againcards in order to find the algorithmthatwill guide itsownRobalong the pathway. Cards must be stacked up so that the first onematches the first step and the last onematches the last step. Therefore the stack must be given to the personwhoplaysRob in orderthat he tries to perform. For eachcorrectstep team B collects a card-trace and earnsonepoint. The performance endswhenRob of team B goes out of the pathway or completesit. • At the end of the performance, roles must be invertedbetween the two teams. The winneris the team thathasscored more points or, in case of parity, the team thathasspentless time. 3rd CLASS The number of cards to use depends on theplayers’ age and experience.

  6. 3rd CLASS the game represented on the notebook


  8. The specificaimis to letstudentsunderstandwhat planning actuallyis. • Forthispurpose, studentsmustbeabletowrite a planthatcouldbeperformedbyotherstudents and thatmakesthemreproduce a drawing, bycolouring the boxes on a squaredpapersheet. SQUARES PLANNING – 4th CLASS DEMO

  9. 4rd CLASS PLANNING SYMBOLS Go forward one step Go back one step Go up one step Go down one step Go to next colour Colour the box

  10. 4rd CLASS

  11. 4rd CLASS Dopo esserci esercitati sulla carta, abbiamo realizzato una staffetta a squadre, organizzata nel seguente modo: • Il primo bambino trova sul pavimento un disegno da riprodurre e un foglio bianco sul quale scrive il primo passo del «programma» • Il secondo scrive il passo successivo e così via fino ad arrivare alla programmazione completa del modello. Questo gioco è utile per capire: • Come correggere gli errori di programmazione • La necessità di controllare il proprio lavoro e quello che gli altri hanno fatto prima • L’importanza del proprio ruolo nel lavoro di squadra


  13. The mainpurposeis to explainthat the samething can be realizedin manydifferent ways and thatsometimesthereis a way “better” thananother. • Students willunderstandhowimportantis to geteachinstruction of a planasmuchclear and notambiguousaspossible, to maketheirplanseffective. • By usingTangramshapes (an old Chinese puzzle) and a squared paper, a “programmer” student givesinstructions to a “calculator” student, in order to lethimrebuild a geometricdrawing. ALGORITHM - 5th CLASS

  14. Pupils are dividedintogroups. Theywilldiscoverhowdifficultis to giveclearinstructions. A person for eachgroupwill be the “calculator” and he willreceiveallpuzzle pieces. Anotherpersonwill be the “programmer” whowillchoose a picture from the catalogue (withoutletting the “calculator” seeit). The twochildrenwill be sitting back to back ... and nowthereis the fun part! 5rd CLASS

  15. The “programmer” will have to describe his picture to the “calculator” to help him rebuild the original picture. The programmers can use any word or sentence they want, but they can’t use sounds or body movements. 5rd CLASS

  16. LIVELLI DI DIFFICOLTA’ MAGGIORE • Stabilire un tempo massimo • Stabilire il numero massimo di istruzioni • Entrambi i precedenti Il gioco proposto veicola importanti concetti di calcolo matematico, aiuta a ragionare in modo sistematico, sviluppa il pensiero creativo partecipando in prima persona all’elaborazione

  17. 5rd CLASS

  18. Lo stesso gioco può essere realizzato con l’uso di materiali diversi (ad esempio…disegni costruiti con i fiammiferi)

  19. Metacognizione sul gioco Alla fine del gioco i bambini riflettono: • Quanti tentativi ci vogliono prima che il calcolatore riesca a ricreare l’immagine originale? • Quali sono i primi errori? • Quali sono gli errori più comuni? • Quali sono gli errori più facili da correggere? 5rd CLASS

  20. Le risposte dei bambini: • I computer pensano in maniera diversa. • I calcolatori non intuiscono in base al tono di voce o al linguaggio del corpo. • Il comando dato al calcolatore deve essere preciso, perché un calcolatore eseguirà direttamente le istruzioni della frase che ha ricevuto. Se gli fornisci istruzioni ambigue le valuterà nel modo che gli è stato detto, indipendentemente da quello che intendevi. 5rd CLASS

  21. Theseactivities are only a startingpoint per insegnare ai bambini a ragionare e a riflettere attraverso il gioco (metacognizione) su come risolvere problemi autentici utilizzando gli algoritmi e il linguaggio di programmazione per pianificare soluzioni diverse. Considerazioni finali

More Related