400 likes | 1.01k Vues
ENGRANAJES. RUEDAS RECTAS. ENGRANAJE RECTO. Valores Caracteristicos: Número de dientes, z Módulo, m en mm Paso= m. NOMENCLATURA. DIMENSIONES:. Diámetro medio: D= m z Diámetro de cabeza: D= m (z+2) Diámetro de fondo: D= m (z-2,5). RUEDAS RECTAS. ENGRANAJE RECTO.
E N D
RUEDAS RECTAS ENGRANAJE RECTO • Valores Caracteristicos: • Número de dientes, z • Módulo, m en mm • Paso= m
NOMENCLATURA DIMENSIONES: • Diámetro medio: D= m z • Diámetro de cabeza: D= m (z+2) • Diámetro de fondo: D= m (z-2,5)
RUEDAS RECTAS ENGRANAJE RECTO
RUEDAS RECTAS FUERZAS GENERADAS Fuerza Tangencial: Ft = Mt / R Fuerza Radial: Fr = Ft Tg , ángulo de contacto. Valor habitual, =20º
RUEDAS HELICOIDALES • Valores Caracteristicos: • Número de dientes, z • Módulo, m en mm • Paso= m • a, ángulo de hélice. Valores habituales de 15º 20º DIMENSIONES: • Diámetro medio: D= ma z • Diámetro de cabeza: D= ma (z+2) • Diámetro de fondo: D= ma (z-2,5) Módulo aparente: ma = m / cos a
RUEDAS HELICOIDALES FUERZAS GENERADAS Fuerza Tangencial: Ft = Mt / Ra Fuerza Radial: Fr = Ft Tg a Tg a =Tg / Cos a Fuerza axial: Fr = Ft Tg a
RUEDAS CONICAS • Valores Caracteristicos: • Número de dientes, z • Módulo, m medio en mm • Paso= m • 1 - 2, ángulos de paso. Ejes perpendiculares: 1 + 2 = 90º DIMENSIONES: • Diámetro medio: D= m z • Diámetro de cabeza: D= m (z+2) • Diámetro de fondo: D= m (z-2,5)
RUEDAS CONICAS FUERZAS GENERADAS Fuerza Tangencial: Ft = Mt / Rmedio Fuerza Radial: Fr = Ft Tg Cos Fuerza axial: Fr = Ft Tg Sen
Aplicación de los diferentes tipos de ruedas En la figura se muestra una batidora industrial, en la que podemos ver los diferentes tipos de engranajes.
Engranaje, tornillo sin fín a.) de dientes cilíndricos b.) doble envolvente.
Pasos diametrales preferidos Pasos diametrales preferidos para cuatro clases de dientes
Pasos diametrales Pasos diametrales estándares comparados con el tamaño del diente. Se supone un tamaño real
Addendum, Dedendum and Clearance Table 14.2 Formulas for addendum, dedendum, and clearance (pressure angle 20°, full-depth involute.) Text Reference: Table 14.2, page 623
Pitch and Base Circles Figure 14.8 Pitch and base circles for pinion and gear as well as line of action and pressure angle. Text Reference: Figure 14.8, page 624
Involute Curve Figure 14.9 Construction of involute curve. Text Reference: Figure 14.9, page 625
Contact Ratio Figure 14.10 Illustration of parameters important in defining contact ratio. Text Reference: Figure 14.10, page 629
Line of Action Figure 14.11 Details of line of action, showing angles of approach and recess for both pinion and gear. Text Reference: Figure 14.11, page 629
Backlash Figure 14.12 Illustration of backlash in gears. Text Reference: Figure 14.12, page 632
Recommended Minimum Backlash Table 14.3 Recommended minimum backlash for coarse-pitch gears. Text Reference: Table 14.3, page 633
Externally Meshing Spur Gears Figure 14.13 Externally meshing spur gears. Text Reference: Figure 14.13, page 635
Internally Meshing Spur Gears Figure 14.14 Internally meshing spur gears. Text Reference: Figure 14.14, page 635
Simple Gear Train Figure 14.15 Simple gear train. Text Reference: Figure 14.15, page 636
Compound Gear Train Figure 14.16 Compound gear train. Text Reference: Figure 14.16, page 636
Example 14.7 Figure 14.17 Gear train used in Example 14.7. Text Reference: Figure 14.17, page 637
Allowable Bending Stress vs. Brinell Hardness Figure 14.18 Effect of Brinell hardness on allowable bending stress for two grades of through-hardened steel [ANSI/AGMA Standard 1012-F90, Gear Nomenclature, Definition of Terms with Symbols, American Gear Manufacturing Association, 1990.] Text Reference: Figure 14.18, page 638
Contact Stress vs. Brinell Hardness Figure 14.19 Effect of Brinell Hardness on allowable contact stress for two grades of through-hardened steel. [ANSI/AGMA Standard 1012-F90, Gear Nomenclature, Definition of Terms with Symbols, American Gear Manufacturing Association, 1990.] Text Reference: Figure 14.19, page 639
Forces on Gear Tooth Figure 14.20 Forces acting on individual gear tooth. Text Reference: Figure 14.20, page 640
Bending Stresses Figure 14.21 Forces and length dimensions used in determining bending tooth stresses. (a) Tooth; (b) cantilevered beam. Text Reference: Figure 14.20, page 641
Lewis Form Factors Table 14.4 Lewis form factors for various numbers of teeth (pressure angle 20°, full depth involute). Text Reference: Table 14.4, page 642
Spur Gear Geometry Factors Figure 14.22 Spur gear geometry factors for pressure angle of 20° and full-depth involute. [ANSI/AGMA Standard 1012-F90, Gear Nomenclature, Definition of Terms with Symbols, American Gear Manufacturing Association, 1990.] Text Reference: Figure 14.21, page 643
Application Factor Table 14.5 Application factor as a function of driving power source and driven machine. Text Reference: Table 14.5, page 643
Size Factor Table 14.6 Size factor as a function of diametral pitch or module. Text Reference: Table 14.6, page 644
Load Distribution Factor Figure 14.23 Load distribution factor as function of face width and ratio of face width to pitch diameters. Commercial quality gears assumed. [From Mott (1992).] Text Reference: Figure 14.23, page 645
Dynamic Factor Figure 14.24 Dynamic factor as function of pitch-line velocity and transmission accuracy level number. Text Reference: Figure 14.24, page 645
Helical Gear Figure 14.25 Helical gear. (a) Front view; (b) side view. Text Reference: Figure 14.25, page 651
Pitches of Helical Gears Figure 14.26 Pitches of helical gears. (a) Circular; (b) axial. Text Reference: Figure 14.26, page 652
Motor Torque and Speed Figure 14.28 Torque and speed of motor as function of current for industrial mixer used in case study. Text Reference: Figure 14.28, page 655