1 / 23

One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM

One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM. N. YAMANAKA (Osaka University). In collaboration with T. Sato (Osaka U niv .), T. Kubota (Osaka U niv .). 2010 /8/9 Sigma Hall Osaka Univ. Contents. Introduction Atomic EDM

abby
Télécharger la présentation

One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. One-loop analysis of the 4-Femicontribution to the Atomic EDMwithin R-parity violating MSSM N. YAMANAKA (Osaka University) In collaboration with T. Sato (OsakaUniv.), T. Kubota (OsakaUniv.) 2010/8/9 Sigma Hall Osaka Univ.

  2. Contents • Introduction • Atomic EDM • SUSY and R-parity violation • One-loop analysis of CP-odd e-N interaction • Summary

  3. Introduction

  4. Go beyond the Standard Model Sakharov’s conditions: Conditions needed to realize matter Abundant Universe • Baryon/lepton number violating interactions • C &CP violation • Departure from thermal equilibrium Matter/photon ratio : CKM prediction too small!! ⇒ Need New physics with larger CP violation!! How to probe ? ⇒ Electric dipole moment!!

  5. Electric dipole moment (EDM) Properties: P, T-odd observable (T-odd = CP-odd) + - Very accurate measurement is possible (dn< 3.0 x 10-26e cm , de< 1.6 x 10-27e cm , dHg< 3.1 x 10-29e cm , … ) Small SM contribution (dn ~ 10-31~33e cm , de ~ 10-38e cm) Inspection of EDM : → Good probe for large CP violation sources!

  6. Object of study Atomic EDM is a very efficient probe to search for NP beyond SM. Study of Atomic EDM is now very active. Recently, Analysis of Atomic EDM (CP-odd e-N interaction) within RPVMSSM at the tree level (Herczeg, 2000) Update of 199Hg EDM experiment (Washington Univ., 2009) Object: Investigate RPVMSSM contribution to the atomic EDM (199Hg), at the one-loop level.

  7. Atomic EDM

  8. 199Hg EDM Diamagnetic atom !! Sensitivity to CP-odd mechanisms: Sensitive to nucleon EDMs , CP-odd electron-nucleon interactions , CP-odd nucleon-nucleon interaction, … Diamagnetic Atom EDM in SM is very small ⇒ Powerful probe of New physics ! Current exp. result: d(199Hg) =(0.49 ± 1.29 ± 0.76) x 10-29 e cm W. C. Griffith et al., Phys. Rev. Lett. 102, 101601 (2009).

  9. Outline of EDM calculation RPVMSSM M. Pospelov, A. Ritz., Ann. Phys. 318, 119 (2005). Our object: Obtain limit on RPV couplings from 199Hg EDM exp. (using CSP).

  10. CP-odd electron-nucleon interaction e ⇒ P-odd, CP-odd interaction, contribute to 199Hg EDM !! N ⇒ Dominant one-loop RPV contribution to CSP ⇒ Strongest constraints on CSP,CT, CPS from 199Hg EDM : |dHg| <3.1x 10-29 e cm (199Hg EDM, Griffith et al., 2009) J.S.M. Ginges, V.V. Flambaum, Phys. Rept. 397, 63 (2004).

  11. SUSY and R-parity violation

  12. Supersymmetry (SUSY) ⇔ ⇒ Each particle has a “super-partner” fermion boson Symmetry between boson & fermion: Minimal Supersymmetric Standard Model (MSSM): ⇒ Gauge invariant, renormalizable log L + ~ ⇒ Phenomenological extension of the SM!! Why SUSY? • SUSY cancels power divergences (Fine tuning) • SUSY can break the EW symmetry. • Dark matter candidates, new CP violation sources, etc. • Better coincidence of gauge couplings at 1016GeV (GUT) …

  13. R-parity violation d u ~ eL Supersymmetric extension of the SM allows B or L interaction ⇒ We must impose R-parity conservation to forbid them But this assumption is ad hoc !! R-parity : R-parity violation → lepton/baryon number violation RPV lagrangian needed: ⇒ 45 interactions total Yukawa interaction!! Many RPV interactions are constrained phenomenologically (proton decay, double beta decay, etc)

  14. One-loop analysis of the CP-odd e-N interaction

  15. Previous work : Tree level (Herczeg, 2000) l*1j1 l1j1 Tree level analysis of RPVMSSM Obtained limit via CP-odd e-N int. (CSP) l’jkk l’*jkk Constraint from 205Tl EDM exp. data ( CSP< 3.4 x 10-7 ) d,s,b quark Limit obtained from 205Tl EDM: b quark contribution: s quark contribution: d quark contribution: ⇒ Is it possible to constrain other RPV couplings at the loop level? P. Herczeg, Phys. Rev. D61, 095010 (2000).

  16. Setup of Parameters Setup of SUSY parameters: • Soft breaking squark and slepton mass matrices are diagonal in flavor and L <-> R • Yukawa couplings of 1st and 2nd generation neglected • Massless neutrino • RPV sector does not contain any soft SUSY breaking terms • RPV sector does not contain Higgs-lepton mixing • SUSY particle mass = O(100 GeV) Constrain on RPV couplings from other exp. : | l121 | < 0.04 [eR] CKM | l131| < 0.05 [eR] t decay ratio | l’221 | < 1.2 x 10-2 [dR] K ->pnn | l’321 | < 1.2 x 10-2 [dR] K ->pnn | l’231 | < 0.22 [dL] n-q inelastic scattering | l’331 | < 0.12 [dR] B- decay M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005). […] denote SUSY particle mass in unit of 100 GeV

  17. Diagrams Enumerate all one-loop e-u&e-d interaction diagrams with 2 RPV couplings • ⇒ No contribution from Vertex loop diagram : • Renormalization of RPV couplings • No imaginary part • Other cancellation mechanism ⇒ Reduce to the analysis of box diagrams!

  18. Box diagrams d-quark – electron interaction (exchange type) u-quark – electron interaction d-quark – electron interaction (direct type) 2 diagrams can have significant contribution to the atomic EDM with different coupling from the tree level

  19. One-loop RPV contribution to atomic EDM RPV coupling (l) (+ h.c.) RPV coupling (l’) CKM matrix Loop integral RPV couplings Scalar interaction < 5.2 x10-8

  20. Constraint to RPV couplings S-electron mass dependence of upper limit of Im( l*1i1l’ia1 ): (GeV) (GeV) Charm quark in the loop (a=2) Top quark in the loop (a=3) If s-electron mass 7.3 x 10-6 6.0 x 10-4 (i=2,3)

  21. Comparison with other exp. data Limit from 199Hg EDM (tree level, Herczeg 2000): | Im ( l*121l’211 )| < 2.6 x 10-9 | Im ( l*131l’311 )| < 2.6 x 10-9 | Im ( l*121l’222 )| < 6 x 10-9 | Im ( l*131l’322 )| < 6 x 10-9 | Im ( l*121l’233 )| < 6 x 10-7 | Im ( l*131l’333 )| < 6 x 10-7 (SUSY mass = 100GeV) Limit from other exp. (current limit on RPV couplings): | l*121l’221 | < 4.8 x 10-4 | l*131l’321 | < 6.0 x 10-4 | l*121l’231 | < 8.8 x 10-3 | l*131l’331 | < 6.0 x 10-3 (SUSY mass = 100GeV) Limit from 199Hg EDM (1-loop analysis): 7.3 x 10-6 (i=2,3) 6.0 x 10-4 (SUSY mass = 100GeV) ⇒ New constraints on CP phase of RPV couplings !!

  22. Summary & future interest Summary: • We have analyzed the RPV scalar e-N interaction contribution to the atomic EDM at the one-loop level. • The estimation yield 1~2 order tighter constraint on (CP phase of) RPV couplings l*121l’221 , l*131l’321 , l*121l’231 , l*131l’331 . Future interest: • Neutron EDM : one-loop analysis on quark-quark interaction

  23. Nucleon matrix element (quark -> nucleon) q q ~ nL ~ nL How to build Nucleon level effective (scalar) interaction from quark level interaction q q q N N q q q (Hisano-san’s talk) mX = 1321 MeV mL = 1116 MeV mS = 1189 MeV mu = 5.1 MeV md = 9.3 MeV ms = 175 MeV

More Related