1 / 68

CS 121 Digital Logic Design

Chapter 3. CS 121 Digital Logic Design. Gate-Level Minimization. Outline. 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3 .5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function.

abdalla
Télécharger la présentation

CS 121 Digital Logic Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 3 CS 121Digital Logic Design Gate-Level Minimization

  2. Outline 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3.5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function

  3. 3.1 Introduction (1-1) • Gate-Level Minimization refers to the design task of finding an optimal gate-level implementation of the Boolean functions describing a digital circuit. • Notes about simplification of Boolean expression: • Minimum number of terms and literals in each term (minimum number of gates and inputs in the digram). • Reduce the complexity of the digital gates. • The simplest expression is not unique. • Simplification Methods: • Algebraic minimization  lack on specific rules. (section 2.4). • Karnaugh map or K-map.

  4. Outline 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3.5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function

  5. 3.2 The Map Method (1-12) • A Karnaugh map is a graphical tool for assisting in the general simplification procedure. • Combination of 2, 4, … adjacent squares • The relation is: Logic circuit ↔Boolean function ↔ Truth table ↔ K-map ↔ conical form ↔ satndrad form. • Conical form: ( sum of minterms , product of maxterms. • Standrad form: ( simplifier : sum of product , product of sum

  6. Y’ Y X’ X 3.2 The Map Method (2-12) Two-variable maps: • Number of sequares (minterms) is , where n is the number of variables. • So in tow-variable map there are 4 squares(minterms).

  7. 3.2 The Map Method (3-12) • Rules for K-map: • We can reduce functions by circling 1’s in the K-map • Each circle represents a mintermreduction • Following circling, we can deduce minimized and-or form. • Rules to consider • Every cell containing a 1 must be included at least once. • The largest possible “power of 2 rectangle” must be enclosed. • The 1’s must be enclosed in the smallest possible number of rectangles.

  8. 3.2 The Map Method (4-12) Two-Variable maps (cont.) Example 1: F(X,Y) = XY’ + XY From the map, we see that F (X,Y) = X. Note: There are implied 0s in other boxes. This can be justified using algebraic manipulations:F(X,Y) = XY’ + XY = X(Y’ +Y) = X.1 = X 1 1 X

  9. 1 1 1 3.2 The Map Method (5-12) Two-Variable maps (cont.) Example 2: G(x,y) = m1 + m2 + m3 Y G(x,y) = m1 + m2 + m3 = X’Y + XY’ + XY From the map, we can see that : G = X + Y X

  10. 1 1 x yF 0 0 1 0 1 1 1 0 0 1 1 0 3.2 The Map Method (6-12) Two-Variable maps (cont.) Example 3: F = Σ(0, 1) Using algebraic manipulations: F = Σ(0,1) = x’y + x’y’ = x’ (y+y’) = x’ X’

  11. 3.2 The Map Method (7-12) Three-variable maps: • 3 variables  8 squares ( minterms). • On a 3-variable K-Map: • One square represents a minterm with three variables • Two adjacent squares represent a product term with two variables • Four “adjacent” terms represent a product term with one variables • Eight “adjacent” terms is the function of all ones (logic 1).

  12. 3.2 The Map Method (8-12) Three-variable maps (cont.): Example 1: F(X,Y) = X’Y’Z’ + X’YZ’ + XY’Z’ + XYZ’ • using algebraic manipulations: F = X’Y’Z’ + X’YZ’ + XY’Z’ + XYZ’ = Z’ (X’Y’ + X’Y + XY’ + XY) = Z’ (X’ (Y’+Y) + X (Y’+Y)) = Z’ (X’+ X) = Z’ Y Z x 1 1 1 1

  13. 3.2 The Map Method (9-12) three-Variable maps (cont.) Example 2: F=AB’C’ +ABC +ABC +ABC + A’B’C + A’BC’ From the map, we see that F=A+BC +BC B C 11 01 00 10 A 1 1 0 1 1 1 1 1

  14. 3.2 The Map Method (10-12) three-Variable maps (cont.) Example 4 : F (x, y, z)= Σ(2, 3, 6, 7) Y using algebraic manipulations: F(x , y, z) = x’yz + xyz + x’yz’ + xyz’ = yz (x’ + x) + yz’ (x’ + x) = yz + yz’ = y (z + z’) = y y z 11 01 00 10 x 1 1 0 1 1 1

  15. 3.2 The Map Method (11-12) three-Variable maps (cont.) Example (3-1) , (3-2) :

  16. 3.2 The Map Method (12-12) three-Variable maps (cont.) Example (3-3) , (3-4) :

  17. Outline 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3.5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function

  18. 3.3 Four-Variables Map (1-9) • 4 variables  16 squares ( minterms). • On a 4-variable K-Map: • Two adjacent squares represent a term of three literals. • Four adjacent squares represent a term of two literals. • Eight adjacent squares represent a term of one literal. • Note:The larger the number of squares combined, the smaller the number of literals in the term.

  19. 3.3 Four-Variables Map (2-9) Flat Map Vs. Torus

  20. 3.3 Four-Variables Map (3-9) Example 1 (3-5) : F(w,x,y,z) = ∑ ( 0,1,2,4,5,6,8,9,12,13,14) y z 11 01 00 10 w x 1 1 00 1 W’YZ’ 1 1 1 01 Y’ XYZ’ 11 1 1 1 10 1 1 F = y‘ + w‘yz‘ + xyz‘

  21. 3.3 Four-Variables Map (4-9) Example 2 (3-6) : F = A’B’C’ + B’CD’ + A’BCD’ + AB’C’ C D B’C’ 11 01 00 10 A B 1 00 1 1 A’CD’ 01 1 11 1 1 1 10 B’D’ F = B‘D‘ + B‘C‘ + A‘CD‘

  22. 3.3 Four-Variables Map (5-9) Simplification using Prime Implicants • A Prime Implicantis a product term obtained by combining the maximum possible number of adjacent squares in the map . • If a minterm in a square is covered by only one prime implicant, that implicant is called Essential. • Prime Implicantsand Essential Prime Implicantscan be determined by inspection of a K-Map. • Notes: • Two adjacent 1’s form prime implicant, if they are not within a group of four adjacent squares. • Four adjacent 1’s form prime implicant, if they are not within a group of eight adjacent squares and so on.

  23. CD C B B D D B C 1 1 1 1 1 1 1 1 BD BD 1 1 B B 1 1 1 1 A A 1 1 1 1 1 1 1 1 A B D D AD Minterms covered by single prime implicant 3.3 Four-Variables Map (6-9) Simplification using Prime Implicants Example 1: F(A,B,C,D) = ∑ (0,2,3,5,7,8,9,10,11,13,15) ESSENTIAL Prime Implicants C

  24. 3.3 Four-Variables Map (7-9) Simplification using Prime Implicants Example 1: F(A,B,C,D) = ∑ (0,2,3,5,7,8,9,10,11,13,15) • Essential prim implicants:BD , B’D’ • Prime implicant: CD , B’C, AD , AB’. • The minterms that not cover by essential implicants are: m3, m9, m11. • The simplified expression is optained from the sum of the essential implicants and other prime implicants that may be needed to cover any remaining minterms. • So this function can be written with these ways: • F = BD + B’D’ + CD + AD • F = BD + B’D’ + CD + AB’ • F = BD + B’D’ + B’C + AD • F = BD + B’D’ + B’C + AB’

  25. Y X W Z 3.3 Four-Variables Map (8-9) Simplification using Prime Implicants Example 2: F(W,X,Y,Z) = ∑ (0,2,3,8,9,10,11,12,13,14,15) X’Y X’Z’ 1 1 1 Note: that all of these prime implicants are essential. 1 1 1 1 1 1 1 1 W

  26. Y X W Z 3.3 Four-Variables Map (9-9) Simplification using Prime Implicants Example 3: F(W,X,Y,Z) = ∑ (0,2,3,4,7,12,13,14,15) W’YZ W’X’Z’ W’X’Y • Essential: WX • Prime: XYZ , XY’Z’ , W’Y’Z’, W’YZ, W’X’Y , W’X’Z’ 1 1 1 W’Y’Z’ 1 1 XYZ 1 1 1 1 XY’Z’ WX

  27. Outline 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3.5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function

  28. 3.5 Producut-of-Sum simplification (1-3) • Mark with 1’s the minterms of F. • Mark with 0’sthe minterms of F’. • Circle 0’s to express F’. • Complement the result in step 3 to obtain a simplified F in product-of-sums form.

  29. C B A D 3.5 Producut-of-Sum simplification (2-3) Example 1: Simplify :F= ∑(0,1,2,5,8,9,10)in Product-of-Sums Form • F’ = AB + CD + BD’ • F = (F’)’ = (A’+B’) . (C’+D’) . (B’+D) CD 0 1 1 1 0 1 0 0 BD’ AB 0 0 0 0 1 1 0 1

  30. 3.5 Producut-of-Sum simplification (3-3) Example 2: Simplify: F(x, y, z) =(0, 2, 5,7)in Product-of-Sums Form X’Z’ y z 11 • F’ = XZ + X’Z’ • F = (F’)’ = (X’+Z’) + (X+Z) 01 00 10 x 0 0 0 0 0 1 XZ

  31. Outline 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3.5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function

  32. 3.6 Don't Cares Condition (1-4) • Sometimes a function table or map contains entries for which it is known: • The input values for the minterm will never occur, or • The output value for the minterm is not used. • Functions that have unspecified outputs for some input combinations are called incompletely specified functions. • In these cases, the output value is defined as a “don't care”( an “x” entry) assumed to be either 0 or 1. • The choice between 0 and 1 is depending on the way the incompletely specified function is simplied. • By placing “don't cares” in the function table or map, the cost of the logic circuit may be lowered.

  33. 3.6 Don't Cares Condition (2-4) • Example : • A logic function having the binary codes for the BCD digits as its inputs. Only the codes for 0 through 9 are used. • The six codes, 1010 through 1111 never occur, so the output values for these codes are “x” to represent “don’t cares.”

  34. Y Y X X W W Z Z 3.6 Don't Cares Condition (3-4) Example (3.9) : F(W,X,Y,Z) = ∑ (1,3,7,11,15) d(W,X,Y,Z) = ∑ (0,2,5) x 1 x x 1 x 1 1 x x 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 F = YZ + W’X’ F = YZ + W’Z

  35. Y X W Z 3.6 Don't Cares Condition (4-4) Example (3.9) : F(W,X,Y,Z) = ∑ (1,3,7,11,15) d(W,X,Y,Z) = ∑ (0,2,5) x 1 x 1 x 0 0 1 0 0 1 0 0 0 0 1 F’ = Z’ + WY’ F = Z ( W’ + Y)

  36. Outline 3.1 Introduction 3.2 The Map Method 3.3 Four-Variable Map 3.5 Product of sums simplification 3.6 Don‘t Care Conditions 3.7 NAND and NOR Implementaion 3.8 Other Two-Level Implementaion 3.9 Exclusive-OR function

  37. 3.7 NAND and NOR Implementation (1-15) • Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and OR gates.

  38. 3.7 NAND and NOR Implementation (2-15) NAND Implementation • NAND gate: a universal gate. • Any digital system can be implemented with it.

  39. 3.7 NAND and NOR Implementation (3-15) NAND Implementation • To facilitate the conversion to NAND logic, there are alternative graphic symbol for it.

  40. 3.7 NAND and NOR Implementation (4-15) NAND Implementation Two-Level Implementation • Procedures (steps) of Implementation with two levels of NAND gates: • Express simplified function in sum of products form. • Draw a NAND gate for each product term that has at least two literals to constitute a group of first-level gates • Draw a single gate using AND-invert or invert-OR in the second level • A term with a single literal requires an inverter in the first level.

  41. 3.7 NAND and NOR Implementation (5-15) NAND Implementation Two-Level Implementation F = AB + CD = [(AB + CD)’]’ = [(AB)’*(CD)’]’

  42. 3.7 NAND and NOR Implementation (6-15) NAND Implementation Two-Level Implementation Example (3.10): F(X,Y,Z) = ∑ (1,2,3,4,5,7) X’Y F = XY’ + X’Y + Z y z 11 01 00 10 x 1 1 1 0 1 1 1 1 Z XY’

  43. 3.7 NAND and NOR Implementation (7-15) NAND Implementation Multilevel Implementation • Procedures (steps) of Implementation with multilevel of NAND gates: • Convert allAND gates to NAND gates with AND-invert graphic symbols • Convert all OR gates to NAND gates with invert-OR graphic symbols • Check all the bubbles in the diagrams. For a single bubble, invert an inverter (one-input NAND gate) or complement the input literal

  44. 3.7 NAND and NOR Implementation (8-15) NAND Implementation Multilevel Implementation EXAMPLE 1: F = A(CD + B) + BC’ B’

  45. 3.7 NAND and NOR Implementation (9-15) NAND Implementation Multilevel Implementation EXAMPLE 2: F = (AB’ + A’B).(C + D’) F C’ D

  46. 3.7 NAND and NOR Implementation (10-15) NOR Implementation • The NOR operation is the dual of the NAND operation. • The NOR gate is anothar universal gate to implement any Boolean function.

  47. 3.7 NAND and NOR Implementation (11-15) NOR Implementation • To facilitate the conversion to NOR logic, there are alternative graphic symbol for it.

  48. 3.7 NAND and NOR Implementation (12-15) NOR Implementation Two-Level Implementation • Procedures of Implementation with two levels of NOR gates: • Express simplified function in product of sums form. • Draw a NOR gate for each product term that has at least two literals to constitute a group of first-level gates • Draw a single gate using OR-invertor invert-ANDin the second level • A term with a single literal requires an inverter in the first level.

  49. 3.7 NAND and NOR Implementation (13-15) NOR Implementation Two-Level Implementation Example : F = (A+B).(C+D).E E

  50. 3.7 NAND and NOR Implementation (14-15) NOR Implementation Multilevel Implementation • Procedures of Implementation with multilevel of NOR gates: • Convert all OR gates to NOR gates with OR-invert graphic symbols • Convert all AND gates to NORgates with invert-AND graphic symbols • Check all the bubbles in the diagrams. For a single bubble, invert aninverter (one-input NAND gate) or complement the input literal

More Related