1 / 63

Menguak Rahasia Angkasa TATA SURYA

Menguak Rahasia Angkasa TATA SURYA. Dipersembahkan Oleh: Muchamad Chairudin, S. Pd. TATA SURYA adalah kumpulan benda-benda langit yang bergerak di sekitar matahari. Teori Proses Pembentukan Tata Surya.

Télécharger la présentation

Menguak Rahasia Angkasa TATA SURYA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Menguak Rahasia Angkasa TATA SURYA Dipersembahkan Oleh: Muchamad Chairudin, S. Pd

  2. TATA SURYAadalah kumpulan benda-benda langit yang bergerak di sekitar matahari. Teori Proses Pembentukan Tata Surya 1. Hipotesis SederhanaMatahari dianggap mempunyai gravitasi yang sangat besar. Gravitasi ini akan menangkap benda-benda diluar angkasa secara acak dalam kurun waktu jutaan tahun. 2. Hipotesis Nebula Nebula adalah sekumpulan (kebanyakan gas helium dan hidrogen), debu (karbon, silikon, besi, dll), dan plasma (lautan muatan listrik positip dan muatan listrik negatip) yang berbentuk awan-awan diruang angkasa. Dalam teori ini: gravitasi ini akan membuat gas-gas ini termampatkan sehingga ukuran awan gas itu mengecil

  3. Lanjutan …… • Hipotesa Tumbukan Thomas Chambertain dan France Moulton: saat matahari masih muda ada sebuah bintang melintas cukup dekat, sebagian materi tertarik oleh bintang itu sehingga materi itu membentuk planet. • Teori Modern • Awan padat dan dingin yang berjumlah banyak mengumpul karena pengaruh gravitasi. • Awan berputar dan memipih membentuk semacam cakram. • Pusat piringan membentuk bola gas panas, menjadi protosun atau calon matahari

  4. Lanjutan ….. • Pusat bola api makin lama makin menggumpal sampai ada keseimbangan antara gaya tolak akibat tekanan gas dan gaya tarik gravitasi. • Partikel-partikel gas bertumbukan membentuk planetesimal (bahan baku planet) dan akhirnya akan bertumbukan satu sama lain dan bergabung membentuk protoplanet. • Daerah yang dekat matahari materialnya tersebut dari logam dan batuan (lebih tahan panas) sehingga akan membentuk planet teresterial. Dan daerah yang jaraknya jauh dengan matahari terbuat dari gas dan es sehingga membentuk planet jovian.

  5. Sejarah pemahaman manusia tentang alam semesta dari Geosentris ke Heliosentris Tata surya dihuni oleh • Sebuah bintang yg disebut matahari & 8 plenet • 34 satelit salah satunya bulan, 5000 asteroid, jutaan meteorit, + 100 milyar komet. • Bintik debu, molekul gas, atom lepas yg tidak terhitung jmlnya. 99 % dari seluruh zat tata surya terkandung dlm matahari, sisanya yg sangat kecil merupakan gabungan bumi dan bulan.

  6. Planet Luar Saturnus Venus Mars Bulan Bumi Merkurius Matahari Yupiter Planet Dalam Letak benda langit menurut Geosentris Clausius Ptolomeus, seorang filsafat Yunani kuno ber-pendapat bahwa “Bumi adalah pusat dari alam semesta”. Matahari, Bulan dan planet-planet beredar mengelilingi Bumi yang tetap diam sebagai pusatnya, disebut pandangan GEOSENTRIS (14 abad dianut orang)

  7. Saturnus Bumi Merkurius Asteroida Neptunus Venus Matahari Mars Yupiter Uranus Pluto Nikolas Kopernikus adalah seorang ahli astronomi bangsa Polandia, mencetuskan revolusi dunia ilmu, agama, serta kebudayaan, menyatakan bahwa Matahari merupakan pusat Tatasurya yang diedari oleh bumi serta planet lainnya (abad 16). Sistem tata surya ini disebut HELIOSENTRIS, susunan planetnya sebagai berikut: Letak benda langit menurut Heliosentris

  8. Susunan Matahari dan anggota tata surya yang mengitarinya. Anggota Tata Surya Matahari Planet TATA SURYA 3. Asteroid 6. Komet 4. Satelit 5. Meteoroid

  9. 1. The Sun (Matahari) Sol

  10. Solar Data Mass (kg) 1.989x1030 Mass (Earth = 1) 332,830 Equatorial radius (km) 695,000 Equatorial radius (Earth = 1) 108.97 Mean density (gm/cm3) 1.410 Surface gravity (m/s2) 273 Rotational period (days) 25-36 Escape velocity (km/sec) 618.02 Luminosity (ergs/sec) 3.827x1033 Apparent Visual Magnitude -26.8 Absolute Visual Magnitude +4.8 Spectral Class G2 V Mean surface temperature 5,800°C Age (billion years) 4.5 Principal chemistry (by mass) Hydrogen 73.4% Helium 25.0% Oxygen 0.8% Carbon 0.3% Iron 0.2% Nitrogen 0.1% Silicon 0.07% Neon 0.05% Magnesium 0.06% Sulfur 0.04% All others 0.2%

  11. MODUL 2 - TATASURYA 11

  12. The composition of the sun MODUL 2 - TATASURYA 12

  13. Sun’s Surface Three major parts: Photosphere, Chromosphere and Corona • Photosphere: • What we observe when we look at the Sun. 96 % of the light we are receiving from the Sun comes from the top 400 kms of the Sun. • We can learn the temperature, pressure and density from the spectrum. • T is about 5000 K. • Pressure is about 1/100 of sea level. • Density is about 1/10000 of sea level.

  14. Chromosphere First discovered during Solar Eclipses. Thin colorful layer, hence the name chromo (color) sphere. Today -> we use a device called Coronagraph The light comes from H- ions and Helium. Thickness of the chromosphere is 2,000-3,000 kms.

  15. Kromosfer pada Matahari

  16. Corona Corona is what the scientists are after during a Solar Eclipse. Question: Why are they so interested in the corona? Answer: Because the temperature is over one million degrees in the corona.

  17. Corona Properties The temperature of the corona is more than 1,000,000 K. The corona extends for millions of kms. (reaches beyond the Earth) Gives out only half as much light as a full moon. Very low density (1/10,000,000,000 of sea level) But because of the high T, the corona is an X-ray source. Dark regions in the X-ray, Coronal Holes -> no trapping of corona by magnetic field.

  18. Aurorae Solar wind causes beautiful displays of aurorae, solar particles caught by Earth’s magnetic field. Strong solar winds can also kill satellites, but this is very rare.

  19. The Active Sun The Sun sustains the life on Earth. Life is very fragile and it takes a long time to develop. Sun has been quite stable for a long time. But stable does not mean quiet. • Granulation • Sunspots • Plages • Prominences • Solar flares

  20. Granulation Honeycomb pattern on the Solar surface. Caused by the convection of gas. Brighter parts: Hot gas raising from inside, darker parts cooler gas falling back. Darker regions are 50-100K colder than the intergranular regions. 700km-1000kms in diameter. Not just around the sunspots.

  21. Sunspots Sunspots are cooler regions on the surface of the Sun. About 1500K colder (still 4500K). Diameter is a few 10,000kms. Appear in groups. Even observed by Galileo. Persist for periods ranging from hours to months. Central dark region is called umbra, lighter surrounding region penumbra (just like the Solar Eclipse). Sunspots are associated with strong magnetic fields: In a pair of sunspots, one spot will have N and the other S polarity.

  22. Solar Rotation Sun rotates around itself. The rotation is in the same sense of the motion of the planets around the Sun. Sun is not a solid body, different parts rotate differently. We use the sunspots to calculate the speed of rotation. Period at the equator is 25 days, near the poles 36 days.

  23. Sunspot Cycle

  24. Plages Plages are cloud-like features above the photosphere. Can only be imaged using hydrogen or calcium light. Regions surrounding the sunspots. The density is higher. Hydrogen and calcium are more excited than their surroundings.

  25. Prominences Bright clouds of gas following the magnetic field lines. Can last for many hours, even days. Eruptive prominences are shot up at 700km/s. Origin is unknown. Cool and dense regions in the corona. Related to the sunspots and plages, probably caused by strong magnetic fields.

  26. Solar Flares Solar flares are flares, with temperature around 10,000,000 K. Lasts for a few minutes, and visible light of the Sun does not change much, however the heated gases emit X-rays and ultraviolet. Cause is not well understood. Related to the magnetic fields. Evidence suggests that flares occur when magnetic fields of opposite polarity come together and annihilate each other. During the flares’ violent explosion gases can be thrown into space.

  27. Coronal Mass Ejections During solar flares coronal material can be ejected at high speeds. Mild ones cause beautiful aurorae. Material with electric charge can affect the ability of the atmosphere to reflect the radio waves and can disrupt the radio communications. In worse situations (happened once) solar flares can cause components in long power lines burn. During this flare some satellites were also dragged to lower orbits.

  28. Planet adalah benda langit yang tidak dapat memancarkan cahaya sendiri.Contoh : Merkurius, Venus, Bumi, Mars, Jupiter, Saturnus, Uranus, Neptunus 2. Planet Merkurius Neptunus Venus Uranus Bumi Saturnus Mars Yupiter Komet Asteroid

  29. TERRESTRIAL PLANETS: small, dense, and made of rocks and iron Mercury Mars Venus Earth The Asteroid Belt Uranus Neptune Saturn Jupiter JOVIAN PLANETS: large, low density, and made of gas and ice MODUL 2 - TATASURYA 29

  30. Pengelompokan Planet Planet inferior a.Bumi sebagai pembatas planet dikelompokkan menjadi dua yaitu planet inferior dan planet superior. Planet superior • Planet superior adalah planet yang orbitnya berada diluar orbit bumi. • Yang termasuk planet superior adalah Mars, Jupiter , Saturnus, Uranus dan Neptunus • Planet inferior adalah planet yang orbitnya berada di dalam orbit bumi. • Yang termasuk planet inferior antara lain Merkurius dan Venus Bumi

  31. b. Asteroid sebagai pembatas planet dikelompokkan menjadi dua planet dalamdan planet luar Planet dalam Planet luar • Planet dalam planet yang orbitnya di dalam peredaran Asteroid • Yang termasuk planet dalam antara lain Merkurius, Venus, Bumi dan Mars. • Planet luar adalah planet yang garis edarnya berada diluar garis edar Asteroid, • Yang termasuk planet luar antara lain Jupiter, Saturnus, Uranus dan Neptunus. Asteroid

  32. Berdasarkan ukuran dan komposisi penyusunnya,Planet dikelompokkan menjadi planet Terrestrial dan Jovian Planet Terestrial • Planet Terrestrial yaitu planet yang memiliki ukuran dan koposisi yang hampir sama dengan bumi, • Yang termasuk planet Terrestrial antara lain Merkurius, Venus, Bumi dan Mars. • Planet Jovian yaitu planet yang memiliki ukuran sangat besar dan komposisi penyusunnya hampir sama dengan planet Jupiter. • yang termasuk planet Jovian antara lain Jupiter, Saturnus, Uranus dan Neptunus. Planet Jovian

  33. Hukum Keppler Hukum keppler merupakan hukum – hukum yang menjelaskan tentang gerak planet. Orbit Planet 1. Hukum I Keppler Orbit planet berbentuk elips dimana matahari terletak pada salah satu titik fokusnya. Perihelium Jarak terdekat planet dari matahari Aphelium Jarak terjauh planet dari matahari Garis edar planet ( orbit ) lintasan yang dilalui planet saat mengitari matahari

  34. Hukum II Keppler • Garis yang menghubungkan planet ke matahari dalam waktu yang sama menempuh luasan yang sama A • Jika waktu planet untuk berevolusi dari AB sama dengan waktu planet untuk berevolusi dari CD sama dengan waktu planet untuk berevolusi dari EF • Maka luas AMB = luas CMD = luas EMF F M E B • Sehingga kecepatan revolusi planet dari AB lebih besar kecepatan revolusi planet dari CD dan kecepatan revolusi planet dari CD lebih besar kecepatan revolusi planet dari EF. • Semakin dekat matahari kecepatan revolusi planet semakin besar • Semakin jauh dari matahari kecepatan revolusi planet semakin lambat. C D

  35. M Kuadrat kala revolusi planet sebanding dengan pangkat tiga jarak rata – rata planet ke matahari Hukum III Keppler d2 d1 T1 = Periode revolusi planet 1 T2 = Periode revolusi planet 2 d1 = jarak rata – rata planet 1 ke matahari d2 = jarak rata – rata planet 2 ke matahari

  36. Gerak planet dan semua anggota tata surya mengikuti hukum grafitasi universal Hukum Grafitasi Universal. Planet bumi dan planet yang lainnya bergerak mengitari matahari karena pengaruh gaya grafitasi matahari. Gerak satelit mengelilingi planet disebabkan ada gaya grafitasi planet pada satelit. Planet bergerak mengelilingi matahari karena matahari memiliki massa lebih besar dari planet. Satelit mengelilingi planet karena planet memiliki massa lebih besar dari satelit. P M Gerak Planet F R Mp = massa planet Mm = massa maahari R = jarak antara massa F = gaya tarik matahari pada planet

  37. M 2 F = G M 1 Besar gaya tarik matahari pada planet adalah sebanding dengan besar massa masing-masing dan berbanding terbalik dengan kuadrat jarak antara pusat massa masing – masing. • F = gaya tarik ( N ) • M1 = massa matahari (kg) • M2 = massa planet (kg) • R = jarak rata- rata matahari dengan planet ( m ) • G = konstanta grafitasi umum ( 6,67 . 10 – 11 N m2/kg2) F R

  38. KU KS Periode Revolusi Periode revolusi adalah waktu yang diperlukan planet mengitari matahari satu kali putaran Belahan Bumi Selatan Awal musim semi, Malam sama panjang dengan siang • Akibat Revolusi bumi • Terjadinya pergantian musim di bumi • Terlihatnya rasi bintang yang berbeda tiap bulan • Terjadi perbedaan lamanya waktu siang dan malam • Gerak semu tahunan matahari Belahan Bumi Utara Awal musim gugur, Malam sama panjang dengan siang 23 September Belahan Bumi Utara menjauhi matahari awal musim dingin Malam lebih panjang dari siang Belahan Bumi Selatan lebih condong ke matahari awal musim panas Siang lebih panjang dari malam Belahan Bumi Utara lebih condong ke matahari awal musim panas Siang lebih lama dari malam Belahan Bumi Selatan menjauhi matahari awal musim dingin malam lebih lama dari siang 22 Desember 21 Juni 21 Maret Belahan Bumi Utara Awal musim semi, Malam sama panjang dengan siang Belahan Bumi Selatan Awal musim gugur, Malam sama panjang dengan siang

  39. Periode rotasi adalah waktu yang diperlukan planet berputar pada sumbunya satu kali putaran Akibat Rotasi 1. Pergantian siang dan malam2. Perbedaan waktu dibumi yang garis bujurnya berbeda3. Gerak semu harian matahari4. Bentuk bumi menggelembung pada katulisiwa dan pepat pada kutubnya.5. perubahan arah angin di katulistiwa Siang Malam Matahari

  40. Data Microsoft encarta Incyclopedia 2008 Tabel data planet

  41. nama Diameter ( km ) Jarak rata-rata ke matahari (Bumi = 1 ) Periode revolusi (Tahun) Ceres* 950 2.77 4.6 Pallas 532 2.77 4.6 Vesta 530 2.36 3.6 Hygiea 408 3.13 5.5 Davida 326 3.18 5.7 Interamnia 318 3.06 5.4 Sumber data Microsoft Encarta encyclopedia 2008. 3. Asteroid • Planet – planet kecil yang berada diantara orbit Mars dan orbit Jupiter.

  42. Asteroids Mathilde & Eros (NEAR) Ida & Dactyl MODUL 2 - TATASURYA 42

  43. Foto Asteroid Asteroid 243 Ida Asteroid 433 Eros

  44. M M 4. SATELIT • Satelit merupakan benda langit yang mengorbit planet dan mengiring planet di dalam mengorbit matahari Satelit alam juga dinamakan Bulan Satelit buatan yang digunakan untuk komunikasi Matahari Planet Satelit

  45. The Moon

  46. Moon: Basic Facts Diameter: 3500 km (2100 miles) Average Distance: 380,000 km (240,000 miles) Distance range: 360,000 – 400,000 km Orbital eccentricity: .05 Orbital inclination: 5 degrees Earth is 4x as large, 81x as massive Bulk density: 3.3 gm/cc (3400 kg/m3)

  47. With Some Very Simple Science, We Can Understand the Geology of the Moon

  48. Lunar Rilles

  49. How Lunar Rilles May Form

  50. A “Lunar” Landscape?

More Related